Skip to main content

Class III Peroxidases: Functions, Localization and Redox Regulation of Isoenzymes

  • Chapter
  • First Online:
Book cover Antioxidants and Antioxidant Enzymes in Higher Plants

Abstract

Class III peroxidases (POXs; EC. 1.11.1.7), are secretory, multifunctional plant enzymes that catalyze the oxidation of a variety of substrates by hydrogen peroxide (H2O2). They show a remarkable diversity of isoenzymes, are encoded by a large number of paralogous genes, and are involved in a broad range of metabolic processes throughout plant growth and development. Peroxidases isoenzymes are located in the cell wall, apoplast and vacuole, and may be either soluble or ionically and covalently cell wall bound. They are involved in cell wall cross-linking and loosening, lignification and suberization, auxin catabolism and secondary metabolism. Due to their ability to control the levels of reactive oxygen species (ROS), POXs are efficient components of the antioxidative system induced in response to environmental stress, such as pathogen attack, metal excess, salinity, drought and high light intensity. In addition to the peroxidative function, POXs can catalyze H2O2 production in the oxidative cycle. Peroxidases are responsible either for cell elongation or cell wall stiffening, affecting carbon allocation, auxin level and redox homeostasis, which implicates their key role as being in the regulation of growth and defence under stress condition. This chapter will discuss novel insights into the functions of PODs with special emphasis on their localization, substrate specificity and the regulation of redox homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abarca D, Martín M, Sabater B (2001) Differential leaf stress responses in young and senescent plants. Physiol Plant 113:409–415

    Article  CAS  PubMed  Google Scholar 

  • Achary VMM, Parinandi NL, Panda BB (2012) Aluminum induces oxidative burst, cell wall NADH peroxidase activity, and DNA damage in root cells of Allium cepa L. Environ Mol Mutagen 53:550–560

    Article  CAS  PubMed  Google Scholar 

  • Agati G, Azzarello E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196:67–76

    Article  CAS  PubMed  Google Scholar 

  • Al-Senaidy AM, Ismael MA (2011) Purification and characterization of membrane-bound peroxidase from date palm leaves (Phoenix dactylifera L.). Saudi J Biol Sci 18:293–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allison SD, Schultz JC (2004) Differential activity of peroxidase isozymes in response to wounding, gypsy moth, and plant hormones in northern red oak (Quercus rubra L.). J Chem Ecol 30:1363–1379

    Article  CAS  PubMed  Google Scholar 

  • Almagro L, Gómez Ros LV, Belchi-Navarro S, Bru R, Ros Barceló A, Pedreno MA (2009) Class III peroxidases in plant defence reactions. J Exp Bot 60:377–390

    Google Scholar 

  • Asard H, Kapila J, Verelst W, Bérczi A (2001) Higher-plant plasma membrane cytochrome b561: a protein in search of a function. Protoplasma 217:77–93

    Article  CAS  PubMed  Google Scholar 

  • Baker MR, Tabb DL, Ching T, Zimmerman LJ, Sakharov IY, Li QX (2016) Site-specific N-glycosylation characterization of windmill palm tree peroxidase using novel tools for analysis of plant glycopeptide mass spectrometry data. J Prot Res 15:2026–2038

    Article  CAS  Google Scholar 

  • Bansal N, Kanwar SS (2013) Peroxidase (s) in environment protection. Sci World J Article ID: 714639

    Google Scholar 

  • Barceló AR, Ros LG, Gabaldón C, López-Serrano M, Pomar F, Carrión JS, Pedreño MA (2004) Basic peroxidases: the gateway for lignin evolution? Phytochem Rev 3:61–78

    Article  Google Scholar 

  • Behr M, Legay S, Hausman JF, Guerriero G (2015) Analysis of cell wall-related genes in organs of Medicago sativa L. under different abiotic stresses. Int J Mol Sci 16:16104–16124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernards MA, Fleming WD, Llewellyn DB, Priefer R, Yang X, Sabatino A, Plourude GL (1999) Biochemical characterization of suberization-associated anionic peroxidase of potato. Plant Physiol 121:135–145

    Google Scholar 

  • Bestwick CS, Brown IR, Mansfield JW (1998) Localized changes in peroxidase activity accompany hydrogen peroxide generation during the development of a nonhost hypersensitive reaction in lettuce. Plant Physiol 118:1067–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bielski BHJ, Cabelli DE, Arudi RL (1985) Reactivity of HO2/O2 radicals in aqueous solution. J Phys Chem Ref D 14:1041–1100

    Google Scholar 

  • Bienert GP, Chaumont F (2014) Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim Biophys Acta-Gen Subj 1840:1596–1604

    Article  CAS  Google Scholar 

  • Bienert GP, Schjoerring JK, Jahn TP (2006) Membrane transport of hydrogen peroxide. Biochim Biophys Acta Biomembr 1758:994–1003

    Article  CAS  Google Scholar 

  • Blee KA, Choi JW, O’Connell AP, Schuch W, Lewis NG, Bolwell GP (2003) A lignin-specific peroxidase in tobacco whose antisense suppression leads to vascular tissue modification. Phytochemistry 64:163–176

    Article  CAS  PubMed  Google Scholar 

  • Bolwell GP, Davies DR, Gerrish C, Auh CK, Murphy TM (1998) Comparative biochemistry of the oxidative burst produced by rose and French bean cells reveals two distinct mechanisms. Plant Physiol 116:1379–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai X, Ye J, Hu T, Zhang Y, Ye Z, Li H (2014) Genome-wide classification and expression analysis of nucleobase–ascorbate transporter (NAT) gene family in tomato. Plant Growth Reg 73:19–30

    Article  CAS  Google Scholar 

  • Casella L, Gullotti M, Poli S, Ferrari RP, Laurenti E, Marchesini A (1993) Purification, characterization and catalytic activity of anionic zucchini peroxidase. Biometals 6:213–222

    Article  CAS  Google Scholar 

  • Chanwun T, Muhamad N, Chirapongsatonkul N, Churngchow N (2013) Hevea brasiliensis cell suspension peroxidase: purification, characterization and application for dye decolorization. AMB Express 3:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen S, Schopfer P (1999) Hydroxyl-radical production in physiological reactions. A novel function of peroxidase. Eur J Biochem 260:726–773

    Article  CAS  PubMed  Google Scholar 

  • Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72:1–20

    Article  CAS  PubMed  Google Scholar 

  • Chibbar RN, van Huystee RB (1984) Characterization of peroxidase in plant cells. Plant Physiol 75:956–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho UH, Park JO (2000) Mercury-induced oxidative stress in tomato seedlings. Plant Sci 156:1–9

    Article  CAS  PubMed  Google Scholar 

  • Choi HW, Kim YJ, Lee SC, Hong JK, Hwang BK (2007) Hydrogen Peroxide generation by the pepper extracellular Peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens. Plant Physiol 145:890–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coego A, Ramirez V, Ellul P, Mayda E, Vera P (2005) The H2O2-regulated Ep5C gene encodes a peroxidase required for bacterial speck susceptibility in tomato. Plant J 42:283–293

    Article  CAS  PubMed  Google Scholar 

  • Cosio C, Dunand C (2008) Specific functions of individual class III peroxidase genes. J Exp Bot 60:391–408

    Article  CAS  PubMed  Google Scholar 

  • Csiszár J, Gallé A, Horváth E, Dancsó P, Gombos M, Váry Z, Erdei L, Györgyey J, Tari I (2012) Different peroxidase activities and expression of abiotic stress-related peroxidases in apical root segments of wheat genotypes with different drought stress tolerance under osmotic stress. Plant Physiol Biochem 52:119–129

    Article  PubMed  CAS  Google Scholar 

  • Daudi A, Cheng Z, O’Brien JA, Mammarella N, Khan S, Ausubel FM, Bolwell GP (2012) The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity. Plant Cell 24:275–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deepa SS, Arumughan C (2002) Purification and characterization of soluble peroxidase from oil palm (Elaeis guineensis Jacq.) leaf. Phytochemistry 61:503–511

    Article  CAS  PubMed  Google Scholar 

  • Dicko MH, Gruppen H, Hilhorst R, Voragen AG, van Berkel WJ (2006) Biochemical characterization of the major sorghum grain peroxidase. FEBS J 273:2293–2307

    Article  CAS  PubMed  Google Scholar 

  • Doke N (1983) Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiol Plant Pathol 23:345–357

    Article  CAS  Google Scholar 

  • Drazkiewicz M, Skórzyńska-Polit E, Krupa Z (2003) Response of the ascorbate–glutathione cycle to excess copper in Arabidopsis thaliana (L.). Plant Sci 164:195–202

    Article  CAS  Google Scholar 

  • Duarte-Vázquez MA, García-Almendárez B, Regalado C, Whitaker JR (2000) Purification and partial characterization of three turnip (Brassica napus L. var. esculenta DC) Peroxidases. J Agric Food Chem 48:1574–1579

    Article  PubMed  CAS  Google Scholar 

  • Dubrovskaya E, Pozdnyakova N, Golubev S, Muratova A, Grinev V, Bondarenkova A, Turkovskaya O (2017) Peroxidases from root exudates of Medicago sativa and Sorghum bicolor: catalytic properties and involvement in PAH degradation. Chemosphere 169:224–232

    Article  CAS  PubMed  Google Scholar 

  • Dunand C, De Meyer M, Crèvecoeur M, Penel C (2003) Expression of a peroxidase gene in zucchini in relation with hypocotyl growth. Plant Physiol Biochem 41:805–811

    Google Scholar 

  • Fahmy AS, Salem AM, Abd MMS (2012) Role of calcium in enhancing the activity and thermal stability of a new cationic peroxidase purified from Euphorbia tirucalli latex. Egypt J Biochem Mol Biol 30:245–268

    CAS  Google Scholar 

  • Fecht-Christoffers MM, Führs H, Braun HP, Horst WJ (2006) The role of hydrogen peroxide-producing and hydrogen peroxide-consuming peroxidases in the leaf apoplast of cowpea in manganese tolerance. Plant Physiol 140:1451–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernie AR, Tóth SZ (2015) Identification of the elusive chloroplast ascorbate transporter extends the substrate specificity of the PHT Family. Mol Plant 8:674–676

    Article  CAS  PubMed  Google Scholar 

  • Ferreres F, Figueiredo R, Bettencourt S, Carqueijeiro I, Oliveira J, Gil-Izquierdo A, Sottomayor M (2011) Identification of phenolic compounds in isolated vacuoles of the medicinal plant Catharanthus roseus and their interaction with vacuolar class III peroxidase: an H2O2 affair? J Exp Bot 62:2841–2854

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francoz E, Ranocha P, Nguyen-Kim H, Jamet E, Burlat V, Dunand C (2015) Roles of cell wall peroxidases in plant development. Phytochemistry 112:15–21

    Article  CAS  PubMed  Google Scholar 

  • Fry SC (1986) Cross-linking of matrix polymers in the growing cell walls of angiosperms. Ann Rev Plant Physiol 37:165–186

    Article  CAS  Google Scholar 

  • Fry SC (1998) Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals. Biochem J 332:507–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabaldón C, Gómez-Ros LV, Núñez-Flores MJL, Esteban-Carrasco A, Ros Barceló AR (2007) Post-translational modifications of the basic peroxidase isoenzyme from Zinnia elegans. Plant Mol Biol 65:43–61

    Article  PubMed  CAS  Google Scholar 

  • Gao C, Wang Y, Liu G, Wang C, Jiang J, Yang C (2010) Cloning of Ten Peroxidase (POD) Genes from Tamarix hispida and characterization of their responses to abiotic stress. Plant Mol Biol Rep 28:77–89

    Article  CAS  Google Scholar 

  • García-Florenciano E, Calderón AA, Muñoz R, Ros A (1992) The decarboxylative pathway of indole-3-acetic acid catabolism is not functional in grapevine protoplasts. J Exp Bot 43:715–721

    Article  Google Scholar 

  • Gazaryan IG, Lagrimini LM, Ashby GA, Thorneley RN (1996) Mechanism of indole-3-acetic acid oxidation by plant peroxidases: anaerobic stopped-flow spectrophotometric studies on horseradish and tobacco peroxidases. Biochem J 313:841–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geebelen W, Vangronsveld J, Adriano DC, Van Poucke LC, Clijsters H (2002) Effects of Pb-EDTA and EDTA on oxidative stress reactions and mineral uptake in Phaseolus vulgaris. Physiol Plant 115:377–384

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Girke C, Daumann M, Niopek-Witz S, Möhlmann T (2014) Nucleobase and nucleoside transport and integration into plant metabolism. Front Plant Sci 5:443

    Article  PubMed  PubMed Central  Google Scholar 

  • González LF, Perez F, Rojas MC (1999) Indole-3-acetic acid Control on acidic oat cell wall peroxidases. J Plant Growth Regul 18:25–31

    Google Scholar 

  • Griesen D, Su D, Bérczi A, Asard H (2004) Localization of an ascorbate-reducible cytochrome b561 in the plant tonoplast. Plant Physiol 134:726–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Großkinsky DK, Koffler BE, Roitsch T, Maier R, Zechmann B (2012) Compartment-specific antioxidative defense in Arabidopsis against virulent and avirulent Pseudomonas syringae. Phytopathology 102:662–673

    Article  PubMed  CAS  Google Scholar 

  • Gurung N, Ray S, Bose S, Rai V (2013) A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. BioMed Res Int 2013:1–18

    Google Scholar 

  • Halliwell B (1978) Lignin synthesis: the generation of hydrogen peroxidase and superoxide by horseradish peroxidase and its stimulation by manganese (II) and phenols. Planta 140:81–88

    Article  CAS  PubMed  Google Scholar 

  • Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504

    Article  CAS  PubMed  Google Scholar 

  • Heyneke E, Luschin-Ebengreuth N, Krajcer I, Wolkinger V, Müller M, Zechmann B (2013) Dynamic compartment specific changes in glutathione and ascorbate levels in Arabidopsis plants exposed to different light intensities. BMC Plant Biol 13:104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirota S, Shimoda T, Takahama U (1998) Tissue and spatial distribution of flavonol and peroxidase in onion bulbs and stability of flavonol glucosides during boiling of the scales. J Agric Food Chem 46:3497–3502

    Article  CAS  Google Scholar 

  • Horemans N, Asard H, Caubergs RJ (1994) The role of ascorbate free-radical as an electron acceptor to cytochrome b-mediated trans-plasma membrane electron transport in higher plants. Plant Physiol 104:1455–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horemans N, Foyer CH, Asard H (2000) Transport and action of ascorbate at the plant plasma membrane. Trend Plant Sci 5:263–267

    Article  CAS  Google Scholar 

  • Hoyle MC (1977) High resolution of peroxidase-indoleacetic acid oxidase isoenzymes from horseradish by isoelectric focusing. Plant Physiol 60:787–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamet E, Albenne C, Boudart G, Irshad M, Canut H, Pont-Lezica R (2008) Recent advances in plant cell wall proteomics. Proteomics 8:893–908

    Google Scholar 

  • Joy O, Eze SOO (2015) Partial purification and characterization of peroxidase extracted from Gongronema latifolium. Am Euras J Sci Res 10:221–227

    Google Scholar 

  • Karpinska B, Zhang K, Rasool B, Pastok D, Morris J, Verrall SR, Foyer CH (2017) The redox state of the apoplast influences the acclimation of photosynthesis and leaf metabolism to changing irradiance. Plant, Cell Environ. https://doi.org/10.1111/pce.12960

    Google Scholar 

  • Karuppanapandian T, Moon JC, Kim C, Manoharan K, Kim W (2011) Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Aust J Crop Sci 5:709–725

    CAS  Google Scholar 

  • Kiba A, Miyake C, Toyoda K, Ichinose Y, Yamada T, Shiraishi T (1997) Superoxide generation in extracts from isolated plant cell walls is regulated by fungal signal molecules. Phytopathology 87:846–852

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Kim SS (1996) Carbohydrate moieties of three radish peroxidases. Phytochemistry 42:287–290

    Article  CAS  PubMed  Google Scholar 

  • Kim BH, Kim SY, Nam KH (2012) Genes encoding plant-specific Class III Peroxidases are responsible for increased cold tolerance of the brassinosteroid-insensitive 1 mutant. Mol Cells 34:539–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YH, Kim CY, Song WK, Kwak SS (2008) Overexpression of sweet potato swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco. Planta 22:867–881

    Article  CAS  Google Scholar 

  • Kim SS, Lee DJ (2005) Purification and characterization of a cationic peroxidase Cs in Raphanus sativus. J Plant Physiol 162:609–617

    Article  CAS  PubMed  Google Scholar 

  • Kim YH, Lim S, Han SH, Lee JC, Song WK, Kwak SS (2007) Differential expression of 10 sweetpotato peroxidases in response to sulfur dioxide, ozone, and ultraviolet radiation. Plant Physiol Biochem 45:908–914

    Article  CAS  PubMed  Google Scholar 

  • Kitamura S (2006) Transport of flavonoids. From cytosolic synthesis to vacuolar accumulation. In: Grotewald E (ed) The science of flavonoids. Springer, New York, pp 123–146

    Chapter  Google Scholar 

  • Klumpp G, Furlan CM, Domingos M, Klumpp A (2000) Response of stress indicators and growth parameters of Tibouchina pulchra Cogn. exposed to air and soil pollution near the industrial complex of Cubatão, Brazil. Sci Total Environ 246:79–91

    Article  CAS  PubMed  Google Scholar 

  • Koffler BE, Luschin-Ebengreuth N, Stabentheiner E, Müller M, Zechmann B (2014) Compartment specific response of antioxidants to drought stress in Arabidopsis. Plant Sci 227:133–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kukavica B, Mitrović A, Mojović M, Veljović-Jovanović S (2007) Effect of indole-3-acetic acid on pea root growth, peroxidase profiles and hydroxyl radical formation. Arch Bio Sci 59:319–326

    Article  Google Scholar 

  • Kukavica B, Mojović M, Vučinić Ž, Maksimović V, Takahama U, Veljović-Jovanović S (2008) Generation of hydroxyl radical in isolated pea root cell wall, and the role of cell wall-bound peroxidase, Mn-SOD and phenolics in their production. Plant Cell Physiol 50:304–317

    Article  PubMed  CAS  Google Scholar 

  • Kukavica B, Veljović-Jovanovic S (2004) Senescence-related changes in the antioxidant status of ginkgo and birch leaves during autumn yellowing. Physiol Plant 22:321–327

    Article  CAS  Google Scholar 

  • Kukavica B, Veljović-Jovanović S, Menckhoff L, Lüthje S (2012) Cell wall-bound cationic and anionic class III isoperoxidases of pea root: biochemical characterization and function in root growth. J Exp Bot 63:4631–4645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Jaggi M, Sinha AK (2012) Ectopic overexpression of vacuolar and apoplastic Catharanthus roseus peroxidases confers differential tolerance to salt and dehydration stress in transgenic tobacco. Protoplasma 249:423–432

    Article  CAS  PubMed  Google Scholar 

  • Lai LS, Wang DJ, Chang CT, Wang CH (2006) Catalytic characteristics of peroxidase from wheat grass. J Agric Food Chem 54:8611–8616

    Article  CAS  PubMed  Google Scholar 

  • Laugesen S, Bak-Jensen KS, Hägglund P, Henriksen A, Finnie C, Svensson B, Roepstorff P (2007) Barley peroxidase isozymes: expression and post-translational modification in mature seeds as identified by two-dimensional gel electrophoresis and mass spectrometry. Int J Mass Spectrom 268:244–253

    Article  CAS  Google Scholar 

  • Lige B, Ma S, van Huystee RB (2001) The effects of the site-directed removal of N-glycosylation from cationic peanut peroxidase on its function. Arch Biochem Biophys 386:17–24

    Article  CAS  PubMed  Google Scholar 

  • Liso R, De Tullio MC, Ciraci S, Balestrini R, La Rocca N, Bruno L, Arrigoni O (2004) Localization of ascorbic acid, ascorbic acid oxidase, and glutathione in roots of Cucurbita maxima L. J Exp Bot 55:2589–2597

    Article  CAS  PubMed  Google Scholar 

  • Liszkay A, Kenk B, Schopfer P (2003) Evidence for involvement of cell wall peroxidase in the generation of hydroxyl radicals mediating extension growth. Planta 217:658–667

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Yu K, He T, Li F, Zhang D, Liu J (2013) The low temperature induced physiological responses of Avena nuda L., a cold-tolerant plant species. Sci World J Article ID: 658793

    Google Scholar 

  • Llorente F, Lopez-Cobollo RM, Catála R, Martinez-Zapater JM, Salinas J (2002) A novel cold-inducible gene from Arabidopsis, RCI3, encodes a peroxidase that constitutes a component for stress tolerance. Plant J 32:13–24

    Article  CAS  PubMed  Google Scholar 

  • López-Serrano M, Fernández MD, Pomar F, Pedreño MA, Ros Barceló A (2004) Zinnia elegans uses the same peroxidase isoenzyme complement for cell wall lignification in both singe-cell treachery elements and xylem vessels. J Exp Bot 55:423–431

    Google Scholar 

  • Lu D, Wang T, Persson S, Mueller-Roeber B, Schippers JH (2014) Transcriptional control of ROS homeostasis by KUODA1 regulates cell expansion during leaf development. Nat Commun Article No 3767

    Google Scholar 

  • Manu BT, Prasada Rao UJS (2009) Calcium modulated activity enhancement and thermal stability study of a cationic peroxidase purified from wheat bran. Food Chem 114:66–71

    Article  CAS  Google Scholar 

  • Marañón MJR, van Huystee RB (1994) Plant peroxidases: interaction between their prosthetic groups. Phytochemistry 37:1217–1225

    Article  Google Scholar 

  • Marinova K, Pourcel L, Weder B, Schwarz M, Barron D, Routaboul JM, Klein M (2007) The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+-antiporter active in proanthocyanidin-accumulating cells of the seed coat. Plant Cell 19:2023–2038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez C, Montillet JL, Bresson E, Agnel JP, Dai GH, Daniel JF, Geiger JP, Nicole M (1998) Apoplastic peroxidase generates superoxide anions in cells of cotton cotyledons undergoing the hypersensitive reaction to Xanthomonas campestris pv. malvacearum race 18. Mol Plant Microbe Interact 11:1038–1047

    Article  CAS  Google Scholar 

  • Marzouki SM, Limam F, Smaali MI, Ulber R, Marzouki MN (2005) A new thermostable peroxidase from garlic Allium sativum. Appl Biochem Biotechnol 127:201–214

    Article  CAS  PubMed  Google Scholar 

  • Matsui T, Tabayashi A, Iwano M, Shinmyo A, Kato K, Nakayama H (2011) Activity of the C-terminal-dependent vacuolar sorting signal of horseradish peroxidase C1a is enhanced by its secondary structure. Plant Cell Physiol 52:413–420

    Article  CAS  PubMed  Google Scholar 

  • Maurel C, Santoni V, Luu DT, Wudick MM, Verdoucq L (2009) The cellular dynamics of plant aquaporin expression and functions. Curr Opin Plant Biol 12:690–698

    Google Scholar 

  • Maurino VG, Grube E, Zielinsk J, Schild A, Fischer K, Flugge UI (2006) Identification and expression analysis of twelve members of the nucleobase-ascorbate transporter (NAT) gene family in Arabidopsis thaliana. Plant Cell Physiol 47:1381–1393

    Google Scholar 

  • McInnis SM, Desikan R, Hancock JT, Hiscock SJ (2006) Production of reactive oxygen species and reactive nitrogen species by angiosperm stigmas and pollen: potential signalling crosstalk? New Phytol 172:221–228

    Article  CAS  PubMed  Google Scholar 

  • Meisrimler CN, Buck F, Lüthje S (2014) Alterations in soluble class III Peroxidases of maize shoots by flooding stress. Proteomes 2:303–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mellon JE (1991) Purification and characterization of isoperoxidases elicited by Aspergillus flavus in cotton ovule cultures. Plant Physiol 95:14–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melo NS, Cabral JMS, Fevereiro MP (1995) Extracellular peroxidases from cell suspension cultures of Vaccinium myrtillus. Purification and characterization of two cationic enzymes. Plant Sci 106:177–184

    Article  CAS  Google Scholar 

  • Mika A, Lüthje S (2003) Properties of guaiacol peroxidase activities isolated from corn root plasma membranes. Plant Physiol 132:1489–1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mika A, Boenisch MJ, Hopff D, Lüthje S (2009) Membrane-bound guaiacol peroxidases from maize (Zea mays L.) roots are regulated by methyl jasmonate, salicylic acid, and pathogen elicitors. J Exp Bot 61:831–841

    Google Scholar 

  • Minibayeva F, Beckett RP, Kranner I (2015) Roles of apoplastic peroxidases in plant response to wounding. Phytochemistry 112:122–129

    Article  CAS  PubMed  Google Scholar 

  • Mohamed SA, El-Badry MO, Drees EA, Fahmy AS (2008) Properties of a cationic peroxidase from Citrus jambhiri cv. Adalia. Appl Biochem Biotechnol 150:127–137

    Article  CAS  PubMed  Google Scholar 

  • Mojović M, Vuletić M, Bačić G, Vučinić Ž (2004) Oxygen radicals produced by plant plasma membranes: an EPR spin-trap study. J Exp Bot 55:2523–2531

    Article  PubMed  CAS  Google Scholar 

  • Morimoto S, Tateish N, Inuyama M, Taura F, Tanaka H, Shoyama Y (1999) Identification and molecular characterization of novel peroxidase with structural protein-like properties. J Biol Chem 274:26192–26198

    Article  CAS  PubMed  Google Scholar 

  • Morina F, Jovanović Lj, Mojović M, Vidović M, Panković D, Veljović-Jovanović S (2010) Zinc-induced oxidative stress in Verbascum thapsus is caused by an accumulation of reactive oxygen species and quinhydrone in the cell wall. Physiol Plant 140:209–224

    Google Scholar 

  • Morina F, Takahama U, Mojović M, Popović-Bijelić A, Veljović-Jovanović S (2016) Formation of stable radicals in catechin/nitrous acid systems: participation of dinitrosocatechin. Food Chem 194:1116–1122

    Google Scholar 

  • Movahed N, Pastore C, Cellini A, Allegro G, Valentini G, Zenoni S, Filippetti I (2016) The grapevine VviPrx31 peroxidase as a candidate gene involved in anthocyanin degradation in ripening berries under high temperature. J Plant Res 129:513–526

    Article  CAS  PubMed  Google Scholar 

  • Mujer CV, Mendoza EMT, Ramirez DA (1983) Coconut peroxidase isoenzymes: isolation, partial purification and physicochemical properties. Phytochemistry 22:1335–1340

    Article  CAS  Google Scholar 

  • Murphy TM, Auh CK (1996) The superoxide synthases of plasma membrane preparations from cultured rose cells. Plant Physiol 110:621–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neill SO, Gould KS (2003) Anthocyanins in leaves: light attenuators or antioxidants? Funct Plant Biol 30:865–873

    Article  CAS  Google Scholar 

  • Niopek-Witz S, Deppe J, Lemieux MJ, Möhlmann T (2014) Biochemical characterization and structure-function relationship of two plant NCS2 proteins, the nucleobase transporters NAT3 and NAT12 from Arabidopsis thaliana. Biochim Biophys Acta 1838:3025–3035

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (2016) Intracellular redox compartmentation and ROS-related communication in regulation and signaling. Plant Physiol 171:1581–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nouren S, Bhatti HN, Bhatti IA, Asgher M (2013) Kinetic and thermal characterization of peroxidase from peels of Citrus reticulata var. Kinnow. J Anim Plant Sci 23:430–435

    CAS  Google Scholar 

  • Nourredine Y, Naima A, Dalila H, Habib S, Karim S (2015) Changes of peroxidase activities under cold stress in annuals populations of Medicago. Mol Plant Breed 6:1–9

    Google Scholar 

  • Palm GJ, Sharma A, Kumari M, Panjikar S, Albrecht D, Jagannadham MV, Hinrichs W (2014) Post-translational modification and extended glycosylation pattern of a plant latex peroxidase of native source characterized by X-ray crystallography. FEBS J 281:4319–4333

    Article  CAS  PubMed  Google Scholar 

  • Pandey VP, Dwivedi UN (2011) Purification and characterization of peroxidase from Leucaena leucocephala, a tree legume. J Mol Catal B Enzym 68:168–173

    Article  CAS  Google Scholar 

  • Pandey VP, Singh S, Singh R, Dwivedi UN (2012) Purification and characterization of peroxidase from papaya (Carica papaya) fruit. Appl Biochem Biotech 167:367–376

    Article  CAS  Google Scholar 

  • Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265

    Article  CAS  PubMed  Google Scholar 

  • Passardi F, Longet D, Penel C, Dunand C (2004) The class III peroxidase multigenic family in rice and its evolution in land plants. Phytochemistry 65:1879–1893

    Article  CAS  PubMed  Google Scholar 

  • Passardi F, Theiler G, Zamocky M, Cosio C, Rouhier N, Teixera F, Margis-Pinheiro M, Dunand C (2007) PeroxiBase: the peroxidase database. Phytochemistry 68:1605–1611

    Article  CAS  PubMed  Google Scholar 

  • Passardi F, Tognolli M, De Meyer M, Penel C, Dunand C (2006) Two cell wall associated peroxidases from Arabidopsis influence root elongation. Planta 223:965–974

    Article  CAS  PubMed  Google Scholar 

  • Pedreira J, Herrera MT, Zarra I, Revilla G (2011) The overexpression of AtPrx37, an apoplastic peroxidase, reduces growth in Arabidopsis. Physiol Plant 141:177–187

    Article  CAS  PubMed  Google Scholar 

  • Petrussa E, Braidot E, Zancani M, Peresson C, Bertolini A, Patui S, Vianello A (2013) Plant flavonoids—biosynthesis, transport and involvement in stress responses. Int J Mol Sci 14:14950–14973

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pick TR, Weber APM (2014) Unknown components of the plastidial permeome. Front Plant Sci 5:410

    Article  PubMed  PubMed Central  Google Scholar 

  • Pollastri S, Tattini M (2011) Flavonols: old compounds for old roles. Ann Bot 108:1225–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pomar F, Bernal MA, Díaz J, Merino F (1997) Purification, characterization and kinetic properties of pepper fruit acidic peroxidase. Phytochemistry 46:1313–1317

    Article  CAS  Google Scholar 

  • Quiroga M, Guerrero C, Botella MA, Barceló A, Amaya I, Medina MI, Valpuesta V (2000) A tomato peroxidase involved in the synthesis of lignin and suberin. Plant Physiol 122:1119–1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raggi S, Ferrarini A, Delledonne M, Dunand C, Ranocha P, De Lorenzo G, Cervone F, Ferrari S (2015) The Arabidopsis Class III Peroxidase AtPRX71 negatively regulates growth under physiological conditions and in response to cell wall damage. Plant Physiol 169:2513–2525

    CAS  PubMed  PubMed Central  Google Scholar 

  • Regalado G, Perez-Arvizu O, Garcia-Almendarez B, Whitaker JR (1999) Purification and properties of two acid peroxidases from Brussels sprouts. J Food Biochem 23:435–450

    Article  CAS  Google Scholar 

  • Ren LL, Liu YJ, Liu HJ, Qian TT, Qi LW, Wang XR, Zenga QY (2014) Subcellular relocalization and positive selection play key roles in the retention of duplicate genes of Populus Class III Peroxidase family. Plant Cell 26:2404–2419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ros Barceló A, Gómez-Ros LV, Carrasco AE (2007) Looking for syringyl peroxidases. Trend Plant Sci 12:486–491

    Article  CAS  Google Scholar 

  • Sánchez-Romero C, García-Gómez ML, Pliego-Alfaro F, Heredia A (1994) Effect of partial deglycosylation on catalytic characteristics and stability of an avocado peroxidase. Physiol Plant 92:97–101

    Article  Google Scholar 

  • Sasaki K, Yuichi O, Hiraga S, Gotoh Y, Seo S, Mitsuhara I, Ito H, Matusi H, Ohashi Y (2007) Characterization of two rice peroxidase promoters that respond to blast fungus-infection. Mol Genet Genomics 278:709–722

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Sugiyama M, Górecki RJ, Fukuda H, Komamine A (1993) Interrelationship between lignin deposition and the activities of peroxidase isoenzymes in differentiating tracheary elements of Zinnia. Planta 189:584–589

    Article  CAS  Google Scholar 

  • Schloss P, Walter C, Mäder M (1987) Basic peroxidases in isolated vacuoles of Nicotiana tabacum L. Planta 170:225–229

    Article  CAS  PubMed  Google Scholar 

  • Schopfer P, Plachy C, Frahry G (2001) Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin and abscisic acid. Plant Physiol 125:1591–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scialabba N, Grandi C, Henatsch C (2002) Organic agriculture and genetic resources for food and agriculture. In: Biodiversity and the ecosystem approach in agriculture, forestry, and fisheries: satellite event on the occasion of the ninth regular session of the Commission on Genetic Resources for Food and Agriculture, pp 74–98

    Google Scholar 

  • Sessa DJ, Anderson RL (1981) Soybean peroxidases: purification and some properties. J Agric Food Chem 29:960–965

    Article  CAS  Google Scholar 

  • Shigeto J, Tsutsumi Y (2016) Diverse functions and reactions of class III peroxidases. New Phytol 209:1395–1402

    Article  CAS  PubMed  Google Scholar 

  • Sisecioglo M, Gülçin M, Çankaya A, Atasever MH, Sehitoglu H, Kaya B, Özdemir H (2010) Purification and characterization of peroxidase from Turkish black radish (Raphanus sativus L.) J Med Plants Res 4:1187–1196

    Google Scholar 

  • Sottomayor M, Cardoso IL, Pereira LG, Ros Barceló AR (2004) Peroxidase and the biosynthesis of terpenoid indole alkaloids in the medicinal plant Catharanthus roseus (L.) G. Don. Phytochem Rev 3:159–171

    Article  CAS  Google Scholar 

  • Sottomayor M, Lopez-Serrano M, DiCosmo F, Ros Barceló A (1998) Purification and characterization of α-3′, 4′-anhydrovinblastine synthase (peroxidase-like) from Catharanthus roseus (L.) G. Don. FEBS Lett 428:299–303

    Article  CAS  PubMed  Google Scholar 

  • Sottomayor M, Pinto MD, Salema R, DiCosmo F, Pedreoo MA, Ros Barcelo A (1996) The vacuolar localization of a basic peroxidase isoenzyme responsible for the synthesis of α-31, 41-anhydrovinblastine in Catharanthus roseus (L.) G. Don Leaves. Plant, Cell Environ 19:761–767

    Article  CAS  Google Scholar 

  • Šukalović VH-T, Vuletić M, Marković K, Antić TC, Vučinić Ž (2015) Comparative biochemical characterization of peroxidases (class III) tightly bound to the maize root cell walls and modulation of the enzyme properties as a result of covalent binding. Protoplasma 252:335–343

    Article  CAS  Google Scholar 

  • Suzuki T, Honda Y, Mukasa Y, Kim SJ (2006) Characterization of peroxidase in buckwheat seed. Phytochemistry 67:219–224

    Article  CAS  PubMed  Google Scholar 

  • Tao Y, Lin Y, Huang Z, Ren J, Qu X (2013) Incorporating graphene oxide and gold nanoclusters: A synergistic catalyst with surprisingly high peroxidase-like activity over a broad pH range and its application for cancer cell detection. Adv Mater 25:2594–2599

    Google Scholar 

  • Takahama U (1992) Hydrogen peroxide scavenging systems in vacuoles of mesophyll cells of Vicia faba. Phytochemistry 31:1127–1133

    Article  CAS  Google Scholar 

  • Takahama U (1993) Regulation of peroxidase-dependent oxidation of phenolics by ascorbic acid: different effects of ascorbic acid on the oxidation of coniferyl alcohol by the apoplastic soluble and cell wall-bound peroxidases from epicotyls of Vigna angularis. Plant Cell Physiol 34:809–817

    CAS  Google Scholar 

  • Takahama U (2004) Oxidation of vacuolar and apoplastic phenolic substrates by peroxidase: physiological significance of the oxidation reactions. Phytochem Rev 3:207–219

    Article  CAS  Google Scholar 

  • Takahama U, Oniki T (1992) Regulation of peroxidase-dependent oxidation of phenolics in the apoplast of spinach leaves by ascorbate. Plant Cell Physiol 33:379–387

    CAS  Google Scholar 

  • Takahama U, Oniki T (1997) A peroxidase/phenolics/ascorbate system can scavenge hydrogen peroxide in plant cells. Physiol Plant 101:845–852

    Article  CAS  Google Scholar 

  • Takahama U, Oniki T (2000) Flavonoids and some other phenolics as substrates of peroxidase: physiological significance of the redox reactions. J Plant Res 113:301–309

    Article  CAS  Google Scholar 

  • Tams JW, Welinder KG (1995) Mild chemical deglycosylation of horseradish peroxidase yields a fully active, homogeneous enzyme. Anal Biochem 228:48–55

    Article  CAS  PubMed  Google Scholar 

  • Tamás L, Huttová J, Mistrík I (2002) Effect of aluminium on peroxidase activity in roots of Al-sensitive and Al-resistant barley cultivars. Rostlinná Výroba 48:76–79

    Google Scholar 

  • Tenhaken R (2014) Cell wall remodeling under abiotic stress. Front Plant Sci 5:771

    PubMed  Google Scholar 

  • Thongsook T, Barrett DM (2005) Purification and partial characterization of broccoli (Brassica oleracea Var. italica) peroxidases. J Agric Food Chem 53:3206–3214

    Article  CAS  PubMed  Google Scholar 

  • Tognolli M, Penel C, Greppin H, Simon P (2002) Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. Gene 288:129–138

    Article  CAS  PubMed  Google Scholar 

  • Tsukagoshi H, Busch W, Benfey PN (2010) Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143:606–616

    Article  CAS  PubMed  Google Scholar 

  • Van den Berg BM, Chibbar RN, van Huystee RB (1983) A comparative study of a cationic peroxidase from peanut and an anionic peroxidase from petunia. Plant Cell Rep 2:304–307

    Article  PubMed  Google Scholar 

  • Van Gestelen P, Asard H, Caubergs RJ (1997) Solubilization and separation of a plant plasma membrane NADPH-O2-synthase from other NAD(P)H oxidoreductases. Plant Physiol 115:543–550

    Article  PubMed  PubMed Central  Google Scholar 

  • van Loon LC, Rep M, Pieterse CM (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  CAS  Google Scholar 

  • Veitch NC (2004) Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65:249–259

    Article  CAS  PubMed  Google Scholar 

  • Veljovic-Jovanovic S, Vidovic M, Morina F (2018) Ascorbate as a key player in plant abiotic stress response and tolerance. In: Hossain MA, Munné-Bosch S, Burritt DJ, Vivancos PD, Fujita M, Lorence A (eds) Ascorbic acid in plant growth, development and stress tolerance. Springer International Publishing.

    Google Scholar 

  • Veljović-Jovanović S, Kukavica B, Stevanović B, Navari-Izzo F (2006) Senescence-and drought-related changes in peroxidase and superoxide dismutase isoforms in leaves of Ramonda serbica. J Exp Bot 57:1759–1768

    Google Scholar 

  • Vidović M, Morina F, Milić-Komić S, Vuleta A, Zechmann B, Prokić L, Veljović-Jovanović S (2016) Characterisation of antioxidants in photosynthetic and non-photosynthetic leaf tissues of variegated Pelargonium zonale plants. Plant Biol 18:669–680

    Article  PubMed  CAS  Google Scholar 

  • Vidović M, Morina F, Veljović-Jovanović S (2017) Stimulation of various phenolics in plants under ambient UV-B radiation. In: Singh VP, Singh S, Prasad SM, Parihar P (eds) UV-B Radiation: from environmental stressor to regulator of plant growth. Wiley-Blackwell, Chichester, West Sussex, UK, pp 9–56

    Chapter  Google Scholar 

  • Vitali A, Botta B, Delle Monache G, Zappitelli S, Ricciardi P, Melino S, Giardina B (1998) Purification and partial characterization of a peroxidase from plant cell cultures of Cassia didymobotrya and biotransformation studies. Biochem J 331:513–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CS, Pan H, Weerasekare GM, Stewart RJ, (2015) Peroxidase-catalysed interfacial adhesion of aquatic caddisworm silk. J R Soc Interface 12:20150710

    Google Scholar 

  • Welinder KG (1979) Amino acid sequence studies of horseradish peroxidase. Amino and carboxyl termini, cyanogen bromide and tryptic fragments, the complete sequence, and some structural characteristics of horseradish peroxidase. Eur J Biochem 96:483–502

    Article  CAS  PubMed  Google Scholar 

  • Welinder KG (1992) Superfamily of plant, fungal and bacterial peroxidases. Curr Opin Struct Biol 2:388–393

    Article  CAS  Google Scholar 

  • Welinder KG, Justesen AF, Kjaersgård IV, Jensen RB, Rasmussen SK, Jespersen HM, Duroux L, (2002) Structural diversity and transcription of class III peroxidases from Arabidopsis thaliana. Eur J Biochem 269:6063–6081

    Google Scholar 

  • Wu YX, von Tiedemann A (2002) Impact of fungicides on active oxygen species and antioxidant enzymes in spring barley (Hordeum vulgare L.) exposed to ozone. Environ Pollut 116:37–47

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Yang Z, How J, Xu H, Chen L, Li K (2017) Overexpression of a peroxidase gene (AtPrx64) of Arabidopsis thaliana in tobacco improves plant’s tolerance to aluminium stress. Plant Mol Biol 95:157–168

    Article  CAS  PubMed  Google Scholar 

  • Xue YJ, Tao L, Yang ZM (2008) Aluminium-induced cell wall peroxidase activity and lignin synthesis are differentially regulated by jasmonate and nitric oxide. J Agric Food Chem 56:9676–9684

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki H, Sakihama Y, Ikehara N (1997) Flavonoid-peroxidase reaction as a detoxification mechanism of plant cells against H2O2. Plant Physiol 115:1405–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yim MB, Chock PB, Stadtman ER (1993) Enzyme function of copper, zinc superoxide dismutase as a free radical generator. J Bio Chem 268:4099–4105

    CAS  Google Scholar 

  • Young SA, Guo A, Guikema JA, White FF, Leach JE (1995) Rice cationic peroxidase accumulates in xylem vessels during incompatible interactions with Xanthomonas oryzae pv. oryzae. Plant Physiol 107:1333–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue R, Lu C, Qi J, Han X, Yan S, Guo S, Liu L, Fu X, Chen N, Yin H, Chi H, Tie S (2017) Transcriptome analysis of cadmium-treated roots in maize (Zea mays L.). Front Plant Sci 7:1298

    Google Scholar 

  • Zechmann B (2017) Compartment-specific importance of Ascorbate during environmental stress in plants. Antioxid Redox Signal. https://doi.org/10.1089/ars.2017.7232

    PubMed  Google Scholar 

  • Zechmann B, Stumpe M, Mauch F (2011) Immunocytochemical determination of the subcellular distribution of ascorbate in plants. Planta 233:1–12

    Google Scholar 

  • Zhang C, Doherty-Kirby A, van Huystee R, Lajoie G (2004) Investigation of cationic peanut peroxidase glycans by electrospray ionization mass spectrometry. Phytochemistry 65:1575–1588

    Article  CAS  PubMed  Google Scholar 

  • Zhao J (2015) Flavonoid transport mechanisms: how to go, and with whom. Trend Plant Sci 20:576–585

    Google Scholar 

  • Zipor G, Oren-Shamir M (2013) Do vacuolar peroxidases act as plant caretakers? Plant sci 199:41–47

    Google Scholar 

  • Zipor G, Duarte P, Carqueijeiro I, Shahar L, Ovadia R, Teper-Bamnolker P, Eshel D, Levin Y, Doron-Faigenboim A, Sottomayor M, Oren-Shamir M (2015) In planta anthocyanin degradation by a vacuolar class III peroxidase in Brunfelsia calycina flowers. New Phytol 205:653–665

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Science, and Technological Development of the Republic of Serbia (Project No. III 43010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja Veljović Jovanović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Veljović Jovanović, S., Kukavica, B., Vidović, M., Morina, F., Menckhoff, L. (2018). Class III Peroxidases: Functions, Localization and Redox Regulation of Isoenzymes. In: Gupta, D., Palma, J., Corpas, F. (eds) Antioxidants and Antioxidant Enzymes in Higher Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-75088-0_13

Download citation

Publish with us

Policies and ethics