Advertisement

Wood Charcoal Analysis in Archaeology

  • Ceren Kabukcu
Chapter
Part of the Interdisciplinary Contributions to Archaeology book series (IDCA)

Abstract

This chapter examines historical and recent methodological developments in the field of wood charcoal analysis (anthracology). A key aim is to outline various approaches to research questions relating to the reconstruction of past vegetation cover, fuel wood use practices and palaeoecology. Ethnoarchaeological, experimental and archaeological applications are discussed, in order to demonstrate how anthracologists have addressed the question of the representativeness of wood charcoal remains from archaeological sites in relation to fuel wood use and selection and how their study informs the reconstruction of past woodland composition and growth conditions and human impacts on the environment.

Keywords

Archaeobotany Anthracology Palaeoecology Fuel use Woodland management 

References

  1. Altman, J., Hedl, R., Szabó, P., Mazůrek, P., Riedl, V., Müllerová, J., Kopecký, M., & Doležal, J. (2013). Tree-rings mirror management legacy: Dramatic response of standard oaks to past coppicing in central Europe. PLoS One, 8(2), 1–11.CrossRefGoogle Scholar
  2. Ascough, P. L., Bird, M. I., Francis, S. M., & Lebl, T. (2011). Alkali extraction of archaeological and geological charcoal: Evidence for diagenetic degradation and formation of humic acids. Journal of Archaeological Science, 38(1), 69–78.CrossRefGoogle Scholar
  3. Asouti, E. (2017). Charcoal analysis Web. Cecilia A. Wester Wood reference collection archive. http://pcwww.liv.ac.uk/~easouti/Cecilia%20A.%20Western%20Wood%20Reference%20Collection%20Notebook.html andhttp://pcwww.liv.ac.uk/~easouti/Cecilia%20A.%20Western.htm. Accessed 5 May 2017
  4. Asouti, E., & Austin, P. (2005). Reconstructing woodland vegetation and its exploitation by past societies, based on the analysis and interpretation of archaeological wood charcoal macro-remains. Environmental Archaeology, 10(1), 1–18.CrossRefGoogle Scholar
  5. Asouti, E., & Kabukcu, C. (2014). Holocene semi-arid oak woodlands in the Irano-Anatolian region of Southwest Asia: Natural or anthropogenic? Quaternary Science Reviews, 90, 158–182.CrossRefGoogle Scholar
  6. Billamboz, A. (2008). Dealing with heteroconnections and short tree ring series at different levels of dating in the dendrochronology of the Southwest German pile-dwellings. Dendrochronologia, 26, 145–155.CrossRefGoogle Scholar
  7. Bleicher, N. (2014). Four levels of patterns in tree-rings: An archaeological approach to dendroecology. Vegetation History and Archaeobotany, 23, 615–627.CrossRefGoogle Scholar
  8. Braadbaart, F., & Poole, I. (2008). Morphological, chemical and physical changes during charcoalification of wood and its relevance to archaeological contexts. Journal of Archaeological Science, 35(9), 2434–2445.CrossRefGoogle Scholar
  9. Braadbaart, F., Poole, I., & van Brussel, A. A. (2009). Preservation potential of charcoal in alkaline environments: An experimental approach and implications for the archaeological record. Journal of Archaeological Science, 36(8), 1672–1679.CrossRefGoogle Scholar
  10. Brady, T. J. (1989). The influence of flotation on the rate of recovery of wood charcoal from archaeological sites. Journal of Ethnobiology, 9, 207–227.Google Scholar
  11. Castelletti, L. (1990). Legni e carboni in archeologia. In T. Mannoni & A. Mlonari (Eds.), Scienze in Archeologia (pp. 321–394). Firenze: Edizioni All’insegna del Giglio.Google Scholar
  12. Chabal, L. (1988). L’étude paléoécologique de sites protohistoriques à partir des charbons de bois: la question de l’unité de mesure-dénombrements de fragments ou pesées? In Wood and archaeology. First European conference, Louvain-la-Neuve (pp. 189–205). PACT 22.Google Scholar
  13. Chabal, L. (1992). La représentativité paléo-écologique des charbons de bois archéologiques issus du bois de feu. Bulletin de la Soclété Botanique de France, 139, 213–236.CrossRefGoogle Scholar
  14. Chabal, L., Fabre, L., Terral, J.-F., & Théry-Parisot, I. (1999). L’anthracologie. In C. Bourquin-Mignot, J.-E. Brochier, L. Chabal, S. Crozat, L. Fabre, F. Guibal, P. Marinval, H. Richard, J.-F. Terral, & I. Théry-Parisot (Eds.), La Botanique (pp. 43–104). Paris: Errance.Google Scholar
  15. Chrzazvez, J. (2013). Approche Expérimentale de la Conservation des Charbons de Bois dans les Gisements Paléolithiques: Processus Post-Dépositionnels, Fragmentation et Représentativité des Assemblages Anthracologiques. Ph.D. Thesis, Université de Nice-Sophia Antipolis, UFR Lettres, Arts, Sciences Humaines et Sociales UMR 7264 CEPAM-CNRS. https://tel.archives-ouvertes.fr/tel-00948324/
  16. Chrzazvez, J., Théry-Parisot, I., Fiorucci, G., Terral, J.-P., & Thibaut, B. (2014). Impact of post-depositional processes on charcoal fragmentation and archaeobotanical implications: Experimental approach combining charcoal analysis and biomechanics. Journal of Archaeological Science, 44, 30–42.CrossRefGoogle Scholar
  17. Cohen-Ofri, I., Weiner, L., Boaretto, E., Mintz, G., & Weiner, S. (2006). Modern and fossil charcoal: Aspects of structure and diagenesis. Journal of Archaeological Science, 33(3), 428–439.CrossRefGoogle Scholar
  18. Copini, P., Sass-Klaassen, U., & den Ouden, J. (2010). Coppice fingerprints in growth patterns of pedunculate oak (Quercus robur). In T. Levanic, J. Gricar, P. Hafner, R. Krajnc, S. Jagodic, H. Gärtner, I. Heinrich, & G. Helle (Eds.), TRACE – Tree rings in archaeology, climatology and ecology, Vol. 8: Proceedings of the DENDROSYMPOSIUM 2009, April 16th-19th 2009, Otočec, Slovenia, Scientific technical report STR 10/05 (pp. 54–60). Potsdam: GFZ Potsdam.Google Scholar
  19. Corcuera, L., Camarero, J. J., Sisó, S., & Gil-Pelegrin, E. (2006). Radial-growth and wood-anatomical changes in overaged Quercus pyrenaica coppice stands: Functional responses in a new Mediterranean landscape. Trees, 20, 91–98.CrossRefGoogle Scholar
  20. Couvert, M. (1968). Étude des charbons préhistoriques. Méthodes de préparation et d’ identification. Libyca, 16, 249–256.Google Scholar
  21. Deforce, K., & Haneca, K. (2015). Tree-ring analysis of archaeological charcoal as a tool to identify past woodland management: The case from a 14th century site from Oudenaarde (Belgium). Quaternary International, 366, 70–80.CrossRefGoogle Scholar
  22. Dufraisse, A. (2002). Les habitats littoraux Néolithiques des lacs de Chalain et Clairvaux (Jura, France): collecte du bois de feu, gestion de l’espace forestier et impact sur le couvert arboréen entre 3700 et 2500 av. J.-C. Analyses anthracologiques. Ph.D. Thesis, Université de Franche-Comté, Besançon.Google Scholar
  23. Dufraisse, A. (2006). Charcoal anatomy potential, wood diameter and radial growth. In A. Dufraisse (Ed.), Charcoal analysis: New analytical tools and methods for archaeology, BAR international series 1483 (pp. 47–59). Oxford: Archaeopress.Google Scholar
  24. Dufraisse, A. (2008). Firewood management and woodland exploitation during the late Neolithic at Lac de Chalain (Jura, France). Vegetation History and Archaeobotany, 17, 199–210.CrossRefGoogle Scholar
  25. Dufraisse, A. (2012). Firewood and woodland management in their social, economic and ecological dimensions. In E. Badal, Y. Carrion, M. Macias, & M. Ntinou (Eds.), Wood and charcoal evidence for human and natural history (pp. 65–74). Valencia: Universitat de Valencia.Google Scholar
  26. Dufraisse, A., Pétrequin, A.-M., & Pétrequin, P. (2007). La gestion du bois de feu : un indicateur des contextes socio-écologiques. Approche ethnoarchéologique dans les Hautes Terres de Papua (Nouvelle-Guinée indonésienne). In M. Besse (Ed.), Sociétés Néolithiques: des faits archéologiques aux fonctionnements socio-économiques, Colloque interrégional sur le Néolithique, Cahiers d’Archéologie Romande 108 (pp. 115–126). Lausanne: Cahiers d’Archéologie Romande.Google Scholar
  27. Dufraisse, A., Coubray, S., Girardclos, O., Dupin, A., & Lemoine, M. (2017). Contribution of tyloses quantification in earlywood oak vessels to archaeological charcoal analyses: Estimation of a minimum age and influences of physiological and environmental factors. Quaternary International.  https://doi.org/10.1016/j.quaint.2017.03.070
  28. García Martínez, M. S., & Dufraisse, A. (2012). Correction factors on archaeological wood diameter estimation. In E. Badal, Y. Carrion, M. Macias, & M. Ntinou (Eds.), Wood and charcoal evidence for human and natural history (pp. 283–290). Valencia: Universitat de Valencia.Google Scholar
  29. Godwin, H. (1956). The history of the British Flora. Cambridge: Cambridge University Press.Google Scholar
  30. Godwin, H., & Tansley, A. G. (1941). Prehistoric charcoals as evidence of former vegetation, soil and climate. Journal of Ecology, 19, 117–126.CrossRefGoogle Scholar
  31. Greguss, P. (1955). Identification of living gymnosperms on the basis of xylotomy. Budapest: Akademial Kiado.Google Scholar
  32. Greguss, P. (1959). Holzanatomie der Europaischen Laubhölzer und Sträucher. Budapest: Akademial Kiado.Google Scholar
  33. Grimes, W. F., & Hyde, H. A. (1935). A prehistoric hearth at Radyr, Glamorgan, and its bearing on the nativity of beech (Fagus sylvatica L.) in Britain. Reports and Transactions (Cardiff Naturalists’ Society), 68, 46–54.Google Scholar
  34. Heiss, A. G., & Oeggl, K. (2008). Analysis of the fuel wood used in late bronze age and early iron age copper mining sites of Schwaz and Brixlegg area. Vegetation History and Archaeobotany, 17(2), 211–221.CrossRefGoogle Scholar
  35. Heizer, R. F. (1963). Domestic fuel in primitive society. Journal of the Royal Anthropological Institute of Great Britain and Ireland, 93, 186–194.CrossRefGoogle Scholar
  36. Henry, A. (2011). Paleoenvironnements et gestion du bois de feu au Mésolithique dans le sud-ouest de la France: anthracologie, ethno-archéologie et expérimentation Ph.D. Thesis, University of Nice-Sophia Antipolis.Google Scholar
  37. Henry, A., & Théry-Parisot, I. (2014). From Evenk campfires to prehistoric hearths: Charcoal analysis as a tool for identifying the use of rotten wood as fuel. Journal of Archaeological Science, 52, 321–336.CrossRefGoogle Scholar
  38. Hillebrecht, M. L. (1982). Die Relikte der Holzkohlewirtschaft als Indikatoren für Waldnutzung und Waldentwicklung: Untersuchungen an Beispielen aus Südniedersachsen. Göttingen: E. Goltze.Google Scholar
  39. Huisman, D. J., Braadbaart, F., van Wijk, I. M., & van Os, B. J. H. (2012). Ashes to ashes, charcoal to dust: Micromorphological evidence for ash-induced disintegration of charcoal in early Neolithic (LBK) soil features in Elsloo (The Netherlands). Journal of Archaeological Science, 39, 994–1004.CrossRefGoogle Scholar
  40. Kabukcu, C. (2017). Identification of woodland management practices and tree growth conditions in archaeological fuel waste remains: A case study from the site of Çatalhöyük in central Anatolia, Turkey. Quaternary International.  https://doi.org/10.1016/j.quaint.2017.03.017
  41. Lancelotti, C., Madella, M., Ajithprasad, P., & Petrie, C. (2010). Temperature, compression and fragmentation: An experimental analysis to assess the impact of taphonomic processes on charcoal preservation. Archaeological and Anthropological Sciences, 2, 307–320.CrossRefGoogle Scholar
  42. Leney, L., & Casteel, R. W. (1975). Simplified procedure for examining charcoal specimens for identification. Journal of Archaeological Science, 2, 153–159.CrossRefGoogle Scholar
  43. Ludemann, T. (2006). Anthracological analysis of recent charcoal-burning in the Black Forest. In A. Dufraisse (Ed.), Charcoal analysis: New analytical tools and methods for archaeology, BAR international series 1483 (pp. 61–70). Oxford: Archaeopress.Google Scholar
  44. Ludemann, T., & Nelle, O. (2002). Die Wälder am Schauinsland und ihre Nutzung durch Bergbau und Köhlerei. Freiburg (Breisgau): Forstliche Versuchs- und Forschungsanst, Baden-Württemberg.Google Scholar
  45. Lundström-Baudais, K. (1986). Etude paléoethnobotanique de la station III de Clairvaux. In P. Pétrequin (Ed.), Les sites littoraux néolithiques de Clairvaux-les-Lacs (Jura). I, Problématique générale, l’exemple de la station III (pp. 311–391). Paris: Maison des Sciences de l’Homme.Google Scholar
  46. Maby, C. J. (1932). The identification of wood and wood charcoal fragments. The Analyst, 57, 2–8.CrossRefGoogle Scholar
  47. Marguerie, D. (1992). Evolution de la végétation sous l’impact anthropique en Armorique du Mésolithique au Moyen Age: études palynologiques et anthracologiques des sites archéologiques et des tourbières associées. Rennes: U.P.R. n°403 du C.N.R.S.Google Scholar
  48. Marguerie, D., & Hunot, J.-Y. (2007). Charcoal analysis and dendrology: Data from archaeological sites in northwestern France. Journal of Archaeological Science, 34, 1417–1433.CrossRefGoogle Scholar
  49. Moskal-del Hoyo, M., Wachowiak, M., & Blanchette, R. A. (2010). Preservation of fungi in archaeological charcoal. Journal of Archaeological Science, 37, 2106–2116.CrossRefGoogle Scholar
  50. Murmanis, L. (1975). Formation of tyloses in felled Quercus rubra L. Wood Science and Technology, 9(1), 3–14.CrossRefGoogle Scholar
  51. Nelle, O., (2002). Charcoal burning remains and forest stand structure. Examples from the Black Forest (south-west Germany) and the Bavarian Forest (South-east Germany). In: Thiébault, S. (Ed.), Proceedings of the second international Meeting of Anthracology, Paris (BAR International Series 1063, pp. 201–207).Google Scholar
  52. Ntinou, M. (2002). El paisaje en el norte de Grecia desde el Tardiglaciar al Atlántico. Formaciones vegetales, recursos y usos (BAR International Series 1038) Oxford: British Archaeological Reports.Google Scholar
  53. Paradis, S., Dufraisse, A., & Allée, P. (2013). Radius of curvature measurements and wood diameter: A comparison of different image analysis techniques. In F. Damblon (Ed.), Proceedings of the 4th international meeting of anthracology. Brussels, 8-13 September 2008. Royal Belgian Institute of Natural Sciences, BAR international series 2486 (pp. 173–182).Google Scholar
  54. Paradis-Grenouillet, S., Leleu, J-P., Belingard, C., Rouaud, R. and Allée, P. (2010). AnthracoLOJ: un outil pour la simplification des mesures dendro metriques. Collection EDYTEM 10: 197–202.geolab.univbpclermont. fr/IMG/pdf/doc1.pdf.Google Scholar
  55. Paysen, A. (2012). Charcoal research before modern anthracology. In E. Badal, Y. Carrion, M. Macias, & M. Ntinou (Eds.), Wood and charcoal evidence for human and natural history (pp. 269–275). Valencia: Universitat de Valencia.Google Scholar
  56. Picornell, G. L., Asouti, E., & Martí, E. A. (2011). The ethnoarchaeology of firewood management in the Fang villages of Equatorial Guinea, central Africa: Implications for the interpretation of wood fuel remains from archaeological sites. Journal of Anthropological Archaeology, 30, 375–384.CrossRefGoogle Scholar
  57. Pigorini, L. (1865). Le abitazioni palustri di Fontanello all’Epoca del Ferro. Bullettino di Paletnologia Italiana, 11, 7–11.Google Scholar
  58. Piqué, R. (1999). Quantification in archaeobotany; charcoal analysis and fire-wood management. In J. A. Barceló, I. Briz, & A. Vila (Eds.), New techniques for old times, BAR international series 757 (pp. 188–200). Oxford: Archaeopress.Google Scholar
  59. Prior, J., & Price-Williams, D. (1985). An investigation of climate change in the Holocene epoch using archaeological wood charcoal from Swaziland, Southern Africa. Journal of Archaeological Science, 12, 457–475.CrossRefGoogle Scholar
  60. Rebollo, N.-R., Cohen-Ofri, I., Popovitz-Biro, R., Bar-Yosef, O., Meignen, L., Goldberg, P., Weiner, S., & Boaretto, E. (2008). Structural characterization of charcoal exposed to high and low pH: Implications for C-14 sample preparation and charcoal preservation. Radiocarbon, 50(2), 289–307.CrossRefGoogle Scholar
  61. Rozas, V. (2003). Regeneration patterns, dendroecology, and forest-use history in an old-growth beech–oak lowland forest in Northern Spain. Forest Ecology and Management, 182, 175–194.CrossRefGoogle Scholar
  62. Rozas, V. (2004). A dendroecological reconstruction of age structure and past management in an old-growth pollarded parkland in northern Spain. Forest Ecology and Management, 195, 205–219.CrossRefGoogle Scholar
  63. Salisbury, K. J., & Jane, F. W. (1940). Charcoals from Maiden Castle and their significance in relation to the vegetation and climatic conditions in prehistoric times. Journal of Ecology, 28, 310–325.CrossRefGoogle Scholar
  64. Schweingruber, F. H. (2007). Wood structure and environment. Berlin/Heidelberg: Springer.Google Scholar
  65. Schweingruber, F., Eckstein, D., Serre-Bachet, F., & Bräker, O. (1990). Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia, 8, 9–37.Google Scholar
  66. Scott, A. (2010). Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 291(1–2), 11–39.CrossRefGoogle Scholar
  67. Shackleton, C. M., & Prins, F. (1992). Charcoal analysis and the ‘principle of least effort’ – A conceptual model. Journal of Archaeological Science, 19, 631–637.CrossRefGoogle Scholar
  68. Smart, T. L., & Hoffman, E. S. (1988). Environmental interpretation of archaeological charcoal. In C. A. Hastorf & V. S. Popper (Eds.), Current paleoethnobotany (pp. 165–205). Chicago/London: University of Chicago Press.Google Scholar
  69. Smith, A. G. (1970). The influence of Mesolithic and Neolithic man on the British vegetation: A discussion. In D. Walker & R. G. West (Eds.), Studies on the vegetational history of the British Isles (pp. 81–96). Cambridge: Cambridge University Press.Google Scholar
  70. Taylor, A. M., Gartner, B. L., & Morrell, J. L. (2002). Heartwood formation and natural durability – A review. Wood and Fiber Science, 34(2), 587–611.Google Scholar
  71. Terral, J.-F. (2002). Quantitative anatomical criteria for discriminating wild grapevine (Vitis vinifera ssp. sylvestris) from cultivated vines (Vitis vinifera ssp. vinifera). In S. Thiébault (Ed.), Proceedings of the second international meeting of anthracology, Paris, BAR international series, 1063 (pp. 59–64). Oxford: Archaeopress.Google Scholar
  72. Terral, J.-F., & Arnold-Simard, G. (1996). Beginnings of olive cultivation in eastern Spain in relation to Holocene bioclimatic changes. Quaternary Research, 46, 176–185.CrossRefGoogle Scholar
  73. Terral, J.-F., & Durand, A. (2006). Bio-archaeological evidence of olive tree (Olea europaea L.) irrigation during the middle ages in Southern France and North Eastern Spain. Journal of Archaeological Science, 33(5), 718–724.CrossRefGoogle Scholar
  74. Terral, J.-F., & Mengüal, X. (1999). Reconstruction of Holocene climate in southern France and eastern Spain using quantitative anatomy of olive wood and archaeological charcoal. Palaeogeography, Palaeoclimatology, Palaeoecology, 153, 71–92.CrossRefGoogle Scholar
  75. Théry-Parisot, I., Chabal, L., & Chrzavzez, J. (2010a). Anthracology and taphonomy, from wood gathering to charcoal analysis. A review of the taphonomic processes modifying charcoal assemblages, in archaeological contexts. Palaeogeography, Palaeoclimatology, Palaeoecology, 291(1–2), 142–153.CrossRefGoogle Scholar
  76. Théry-Parisot, I., Chabal, L., Ntinou, M., Bouby, L., & Carré, A. (2010b). Du bois aux charbons de bois : approche expérimentale de la combustion. In I. Théry-Parisot, L. Chabal, & S. Costamagno (Eds.), The taphonomy of burned organic residues and combustion features in archaeological contexts (pp. 81–93). Proceedings of the CEPAM Round Table, 27–29 May 2008. Palethnologie 2. http://www.palethnologie.org/2010-revue/
  77. Théry-Parisot, I. (2001). Économie des Combustibles au Paléolithique. Expérimentation, Anthracologie, Taphonomie. Dossier de Documentation Archéologique 20. Paris: CNRS-Éditions.Google Scholar
  78. Théry-Parisot, I., Henry, A., & Chrzavzez, J. (2016). Apport de l’experimentation a la comprehension des pratiques societales en anthracologie: Gestion et utilisation du bois de feu dans les societes prehistoriques. Cadernos do LEPAARQ, XIII(25), 485–509.Google Scholar
  79. Tusenius, M. L. (1989). Charcoal analytical studies in the northeastern Cape, South Africa (South African Archaeological Society Series 6, pp. 77–83).CrossRefGoogle Scholar
  80. Thiébault, S. (2006). Wood-anatomical evidence of pollarding in ring porous species: A study to develop? In Dufraisse, A. (ed) Charcoal analysis: new analytical tools and methods for archaeology (BAR International Series 1483, pp. 95–102). Oxford: Archaeopress.Google Scholar
  81. Unger, D. F. (1849). Pflanzengeschichtliche Bemerkungen über den Kaiserwald bei Grätz. Botanische Zeitung, 7(17), 313–321.Google Scholar
  82. Vernet, J.-L., Bazile, E., & Évin, J. (1979). Coordination des analyses anthracologiques et des datations absolues sur charbon de bois. Bulletin de la Société Préhistorique Française, 76(3), 76–79.CrossRefGoogle Scholar
  83. Western, A. C. (1969). An attempt at the ecological interpretation of charcoals with special reference to material from Jericho. B.Sc. Dissertation, University of Oxford.Google Scholar
  84. Western, A. C. (1971). The ecological interpretation of ancient charcoals from Jericho. Levant, 3, 31–40.CrossRefGoogle Scholar
  85. Willcox, G. (1974). A history of deforestation as indicated by charcoal analysis of four sites in eastern Anatolia. Anatolian Studies, 24, 117–133.CrossRefGoogle Scholar
  86. Willcox, G. (2002). Evidence for ancient forest cover and deforestation from charcoal analysis of ten archaeological sites on the Euphrates. In S. Thiébault (Ed.), Charcoal analysis. Methodological approaches, palaeoecological results and wood uses, BAR international series 1063 (pp. 141–145). Oxford: Archaeopress.Google Scholar
  87. Willerding, U. (1971). Methodische probleme bei der untersuchung und auswertung von pflanzenfunden. Nachrichten aus Niedersachsens Urgeschichte, 40, 180–198.Google Scholar
  88. Wilson, K., & White, D. J. B. (1986). The anatomy of wood: Its diversity and variability. London: Stobart & Son Ltd..Google Scholar
  89. Wright, N. J. (2017). Examining dendrological features of oak as possible signals of systematic woodland management in the central Anatolian bronze and iron ages. Quaternary International.  https://doi.org/10.1016/j.quaint.2017.01.004
  90. Zalucha, L. A. (1982). Methodology in paleoethnobotany: A study in vegetational reconstruction dealing with the Mill Creek culture of northwestern Iowa. Ph.D. Thesis, University of Wisconsin.Google Scholar
  91. Zipf, G. K. (1949). Human behavior and the principle of least effort. Cambridge, MA: Addison-Wesley.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Archaeology, Classics and EgyptologyUniversity of LiverpoolLiverpoolUK

Personalised recommendations