Skip to main content

Explanations for Groups

Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)

Abstract

Explanations are used in recommender systems for various reasons. Users have to be supported in making (high-quality) decisions more quickly. Developers of recommender systems want to convince users to purchase specific items. Users should better understand how the recommender system works and why a specific item has been recommended. Users should also develop a more in-depth understanding of the item domain. Consequently, explanations are designed in order to achieve specific goals such as increasing the transparency of a recommendation or increasing a user’s trust in the recommender system. In this chapter, we provide an overview of existing research related to explanations in recommender systems, and specifically discuss aspects relevant to group recommendation scenarios. In this context, we present different ways of explaining and visualizing recommendations determined on the basis of aggregated predictions and aggregated models strategies.

Keywords

  • Group Recommendation Scenarios
  • Recommender Systems
  • Domain Items
  • Constraint-based Recommender
  • Content-based Filtering

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Alexander Felfernig, Nava Tintarev,Thi Ngoc Trang Tran, and Martin Stettinger

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-75067-5_6
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-75067-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   84.99
Price excludes VAT (USA)
Fig. 6.1
Fig. 6.2
Fig. 6.3
Fig. 6.4
Fig. 6.5
Fig. 6.6

Notes

  1. 1.

    In contrast to single-user decision making, the exchange of decision-relevant knowledge among group members has to be fostered [4].

  2. 2.

    In line with Jameson and Smyth [32], we interpret arguments as elementary parts of explanations.

  3. 3.

    See also Chap. 3.

References

  1. B. Abdollahi, O. Nasraoui, Using explainability for constrained matrix factorization, in 11th ACM Conference on Recommender Systems, Como, Italy (2017), pp. 79–83

    Google Scholar 

  2. S. Amer-Yahia, S. Roy, A. Chawla, G. Das, C. Yu, Group recommendation: semantics and efficiency, in VLDB’09, Lyon, France (2009), pp. 754–765

    Google Scholar 

  3. L. Ardissono, A. Goy, G. Petrone, M. Segnan, P. Torasso, Intrigue: personalized recommendation of tourist attractions for desktop and handset devices. Appl. Artif. Intell. Spec. Issue Artif. Intell. Cult. Heritage Digit. Libr. 17(8–9), 687–714 (2003)

    Google Scholar 

  4. M. Atas, A. Felfernig, M. Stettinger, T.N. Trang Tran, Beyond item recommendation: using recommendations to stimulate knowledge sharing in group decisions, in 9th International Conference on Social Informatics (SocInfo 2017), Oxford, UK (2017), pp. 368–377

    Google Scholar 

  5. M. Bilgic, R. Mooney, Explaining recommendations: satisfaction vs. promotion, in ACM IUI 2005 Workshop Beyond Personalization, San Diego, CA, USA (2005), pp. 1–6

    Google Scholar 

  6. B. Buchanan, E. Shortliffe, Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project (Addison-Wesley, Boston, 1984)

    Google Scholar 

  7. G. Carenini, J. Moore, Generating and evaluating evaluative arguments. Artif. Intell. 170(11), 925–952 (2006)

    CrossRef  Google Scholar 

  8. J. Castro, F. Quesada, I. Palomares, L. Martínez, A consensus-driven group recommender system. Intell. Syst. 30(8), 887–906 (2015)

    Google Scholar 

  9. J. Castro, J. Lu, G. Zhang, Y. Dong, L. Martínez, Opinion dynamics-based group recommender systems. IEEE Trans. Syst. Man Cybern. Syst. 99, 1–13 (2017).

    CrossRef  Google Scholar 

  10. S. Chang, F. Harper, L. He, L. Terveen, CrowdLens: experimenting with crowd-powered recommendation and explanation, in 10th International AAAI Conference on Web and Social Media (ICWSM’16) (AAAI, Menlo Park, 2016), pp. 52–61

    Google Scholar 

  11. Y. Chen, Interface and interaction design for group and social recommender systems, in ACM Conference on Recommender Systems (RecSys’11), Chicago, IL (2011), pp. 363–366

    Google Scholar 

  12. L. Chen, P. Pu, Critiquing-based recommenders: survey and emerging trends. User Model. User-Adap. Inter. 22(1–2), 125–150 (2012)

    CrossRef  Google Scholar 

  13. L. Chen, F. Wang, Explaining recommendations based on feature sentiments in product reviews, in ACM IUI 2017 (ACM, New York, 2017), pp. 17–28

    Google Scholar 

  14. H. Cramer, V. Evers, S. Ramlal, M. Van Someren, L. Rutledge, N. Stash, L. Aroyo, B. Wielinga, The effects of transparency on trust in and acceptance of a content-based art recommender. User Model. User-Adap. Inter. 18(5), 455–496 (2008)

    CrossRef  Google Scholar 

  15. R. Dong, M. Schaal, M. OMahony, B. Smyth, Topic extraction from online reviews for classification and recommendation, in 23rd International Joint Conference on Artificial Intelligence (IJCAI 2013) (AAAI, Menlo Park, 2013), pp. 1310–1316

    Google Scholar 

  16. A. Felfernig, R. Burke, Constraint-based recommender systems: technologies and research issues, in ACM International Conference on Electronic Commerce (ICEC08), Innsbruck, Austria (2008), pp. 17–26

    Google Scholar 

  17. A. Felfernig, B. Gula, E. Teppan, Knowledge-based recommender technologies for marketing and sales. Spec. Issue Pers. Tech. Recomm. Syst. Intell. User Interfaces Int. J. Pattern Recognit. Artif. Intell. 21(2), 1–22 (2006)

    Google Scholar 

  18. A. Felfernig, B. Gula, G. Leitner, M. Maier, R. Melcher, S. Schippel, E. Teppan, A dominance model for the calculation of decoy products in recommendation environments, in AISB Symposium on Persuasive Technologies, Aberdeen, Scotland (2008), pp. 43–50

    Google Scholar 

  19. A. Felfernig, B. Gula, G. Leitner, M. Maier, R. Melcher, E. Teppan, Persuasion in knowledge-based recommendation, in 3rd International Conference on Persuasive Technology. Lecture Notes in Computer Science (Springer, Berlin, 2008), pp. 71–82

    Google Scholar 

  20. A. Felfernig, M. Schubert, G. Friedrich, M. Mandl, M. Mairitsch, E. Teppan, Plausible repairs for inconsistent requirements, in 21st International Joint Conference on Artificial Intelligence (IJCAI’09), Pasadena, CA (2009), pp. 791–796

    Google Scholar 

  21. A. Felfernig, M. Schubert, C. Zehentner, An efficient diagnosis algorithm for inconsistent constraint sets. Artif. Intell. Eng. Des. Anal. Manuf. 26(1), 53–62 (2012)

    CrossRef  Google Scholar 

  22. A. Felfernig, L. Hotz, C. Bagley, J. Tiihonen, Knowledge-Based Configuration: From Research to Business Cases, 1st edn. (Elsevier/Morgan Kaufmann Publishers, Burlington, 2014)

    Google Scholar 

  23. A. Felfernig, M. Atas, T.N. Trang Tran, M. Stettinger, Towards group-based configuration, in International Workshop on Configuration 2016 (ConfWS’16) (2016), pp. 69–72

    Google Scholar 

  24. A. Felfernig, M. Atas, T.N. Trang Tran, M. Stettinger, S. Polat-Erdeniz, An analysis of group recommendation heuristics for high- and low-involvement items, in International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems (IEA/AIE 2017), Arras, France (2017), pp. 335–344

    Google Scholar 

  25. G. Friedrich, Elimination of spurious explanations, in 16th European Conference on Artificial Intelligence (ECAI 2004) (2004), pp. 813–817

    Google Scholar 

  26. G. Friedrich, M. Zanker, A taxonomy for generating explanations in recommender systems. AI Mag. 32(3), 90–98 (2011)

    CrossRef  Google Scholar 

  27. E. Gansner, Y. Hu, S. Kobourov, C. Volinsky, Putting recommendations on the map: visualizing clusters and relations, in ACM Conference on Recommender Systems, New York, USA (2009), pp. 345–348

    Google Scholar 

  28. F. Gedikli, D. Jannach, M. Ge, How should I explain? a comparison of different explanation types for recommender systems. Hum. Comput. Stud. 72(4), 367–382 (2014)

    CrossRef  Google Scholar 

  29. S. Gkika, G. Kekakos, The persuasive role of explanations in recommender systems, in 2nd International Workshop on Behavior Change Support Systems (BCSS 14) (2014), pp. 59–68

    Google Scholar 

  30. J. Herlocker, J. Konstan, J. Riedl, Explaining collaborative filtering recommendations, in ACM Conference on Computer Supported Cooperative Work (ACM, New York, 2000), pp. 241–250

    Google Scholar 

  31. A. Jameson, More than the sum of its members: challenges for group recommender systems, in International Working Conference on Advanced Visual Interfaces (2004), pp. 48–54

    Google Scholar 

  32. A. Jameson, B. Smyth, Recommendation to groups, in The Adaptive Web, ed. by P. Brusilovsky, A. Kobsa, W. Nejdl. Lecture Notes in Computer Science, vol. 4321 (Springer, Berlin, 2007), pp. 596–627

    Google Scholar 

  33. A. Jameson, S. Baldes, T. Kleinbauer, Two methods for enhancing mutual awareness in a group recommender system, in ACM International Working Conference on Advanced Visual Interfaces, Gallipoli, Italy (2004), pp. 447–449

    Google Scholar 

  34. A. Jameson, M. Willemsen, A. Felfernig, M. de Gemmis, P. Lops, G. Semeraro, L. Chen, Human decision making and recommender systems, in Recommender Systems Handbook, ed. by F. Ricci, L. Rokach, B. Shapira, 2nd edn. (Springer, Berlin, 2015), pp. 611–648

    CrossRef  Google Scholar 

  35. E. Knutov, P. DeBra, M. Pechenizkiy, AH 12 years later: a comprehensive survey of adaptive hypermedia methods and techniques. New Rev. Hypermed. Multimed. 15(1), 5–38 (2009)

    CrossRef  Google Scholar 

  36. J. Konstan, J. Riedl, Recommender systems: from algorithms to user experience. User Model. User-Adap. Inter. 22(1), 101–123 (2012)

    CrossRef  Google Scholar 

  37. P. Kouki, J. Schaffer, J. Pujara, J. O’Donovan, L. Getoor, User preferences for hybrid explanations, in 11th ACM Conference on Recommender Systems, Como, Italy (2017), pp. 84–88

    Google Scholar 

  38. B. Lamche, U. Adigüzel, W. Wörndl, Interactive explanations in mobile shopping recommender systems, in 8th ACM Conference on Recommender Systems, Joint Workshop on Interfaces and Human Decision Making for Recommender Systems (IntRS’14), Foster City, Silicon Valley, California, USA (2014), pp. 14–21

    Google Scholar 

  39. H. Lieberman, N. Dyke, A. Vivacqua, Let’s browse: a collaborative web browsing agent, in 4th International Conference on Intelligent User Interfaces, Los Angeles, CA, USA (1999), pp. 65–68

    Google Scholar 

  40. W. Lin, S. Alvarez, C. Ruiz, Efficient adaptive-support association rule mining for recommender systems. Data Min. Knowl. Disc. 6, 83–105 (2002)

    CrossRef  MathSciNet  Google Scholar 

  41. N. Mahyar, W. Liu, S. Xiao, J. Browne, M. Yang, S. Dow, Consensus: visualizing points of disagreement for multi-criteria collaborative decision making, in ACM Conference on Computer Supported Cooperative Work and Social Computing (ACM, New York, 2017), pp. 17–20

    Google Scholar 

  42. K. McCarthy, J. Reilly, L. McGinty, B. Smyth, On the dynamic generation of compound critiques in conversational recommender systems, in International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems (Springer, Berlin, 2004), pp. 176–184

    Google Scholar 

  43. K. McCarthy, J. Reilly, L. McGinty, B. Smyth, Thinking positively - explanatory feedback for conversational recommender systems, in European Conference on Case-Based Reasoning (ECCBR-04) Explanation Workshop (2004), pp. 1–10

    Google Scholar 

  44. B. Miller, I. Albert, S. Lam, J. Konstan, J. Riedl, MovieLens unplugged: experiences with a recommender system on four mobile devices, in People and Computers XVII Designing for Society, ed. by E. O’Neill, P. Palanque, P. Johnson (Springer, London, 2004), pp. 263–279

    CrossRef  Google Scholar 

  45. K. Muhammad, A. Lawlor, B. Smyth, A live-user study of opinionated explanations for recommender systems, in 21st International Conference on Intelligent User Interfaces (IUI 2016) (ACM, New York, 2016), pp. 256–260

    Google Scholar 

  46. G. Ninaus, A. Felfernig, M. Stettinger, S. Reiterer, G. Leitner, L. Weninger, W. Schanil, IntelliReq: intelligent techniques for software requirements engineering, in Prestigious Applications of Intelligent Systems Conference (PAIS) (2014), pp. 1161–1166

    Google Scholar 

  47. E. Ntoutsi, K. Stefanidis, K. Norvag, H. Kriegel, Fast group recommendations by applying user clustering, in ER 2012. Lecture Notes in Computer Science, vol. 7532 (Springer, Berlin, 2012), pp. 126–140

    Google Scholar 

  48. I. Nunes, D. Jannach, A systematic review and taxonomy of explanations in decision support and recommender systems. User Model. User-Adap. Inter. 27, 393–444 (2017)

    CrossRef  Google Scholar 

  49. M. O’Connor, D. Cosley, J. Konstan, J. Riedl, PolyLens: a recommender system for groups of users, in 7th European Conference on Computer Supported Cooperative Work (2001), pp. 199–218

    Google Scholar 

  50. I. Palomares, L. Martinez, F. Herrera, MENTOR: a graphical monitoring tool of preferences evolution in large-scale group decision making. Knowl.-Based Syst. 58, 66–74 (2014)

    CrossRef  Google Scholar 

  51. P. Pu, L. Chen, Trust-inspiring explanation interfaces for recommender systems. Knowl.-Based Syst. 20(6), 542–556 (2007)

    CrossRef  Google Scholar 

  52. L. Quijano-Sanchez, J. Recio-García, B. Díaz-Agudo, G. Jiménez-Díaz, Social factors in group recommender systems. ACM Trans. Intell. Syst. Technol. 4(1), 8:1–8:30 (2006)

    Google Scholar 

  53. L. Quijano-Sanchez, C. Sauer, J. Recio-García, B. Díaz-Agudo, Make it personal: a social explanation system applied to group recommendations. Expert Syst. Appl. 76, 36–48 (2017)

    CrossRef  Google Scholar 

  54. B. Rastegarpanah, M. Crovella, K. Gummadi, Exploring explanations for matrix factorization recommender systems, fatrec workshop, in 11th ACM Conference on Recommender Systems, Como, Italy (2017)

    Google Scholar 

  55. M. Salamo, K. McCarthy, B. Smyth, Generating recommendations for consensus negotiation in group personalization services. Pers. Ubiquit. Comput. 16(5), 597–610 (2012)

    CrossRef  Google Scholar 

  56. D. Serbos, S. Qi, N. Mamoulis, E. Pitoura, P. Tsaparas, Fairness in package-to-group recommendations, in WWW’17 (ACM, New York, 2017), pp. 371–379

    Google Scholar 

  57. M. Stettinger, Choicla: towards domain-independent decision support for groups of users, in 8th ACM Conference on Recommender Systems, Foster City, Silicon Valley, California, USA (2014), pp. 425–428

    Google Scholar 

  58. M. Stettinger, A. Felfernig, G. Leitner, S. Reiterer, Counteracting anchoring effects in group decision making, in 23rd Conference on User Modeling, Adaptation, and Personalization (UMAP’15). Lecture Notes in Computer Science, vol. 9146, Dublin, Ireland (2015), pp. 118–130

    Google Scholar 

  59. P. Symeonidis, A. Nanopoulos, Y. Manolopoulos, Providing justifications in recommender systems. IEEE Trans. Syst. Man Cybern. 38, 1262–1272 (2008)

    CrossRef  Google Scholar 

  60. J. Teze, S. Gottifredi, A. Garcia, G. Simari, Improving argumentation-based recommender systems through context-adaptable selection criteria. J. Econ. Perspect. 42(21), 8243–8258 (2015)

    Google Scholar 

  61. N. Tintarev, Explaining Recommendations, University of Aberdeen, 2009

    Google Scholar 

  62. N. Tintarev, J. Masthoff, Designing and evaluating explanations for recommender systems, in Recommender Systems Handbook (Springer, Boston, 2011), pp. 479–510

    Google Scholar 

  63. N. Tintarev, J. Masthoff, Evaluating the effectiveness of explanations for recommender systems. User Model. User-Adap. Inter. 22(4–5), 399–439 (2012)

    CrossRef  Google Scholar 

  64. N. Tintarev, J. Masthoff, Explaining recommendations: design and evaluation, in Recommender Systems Handbook, ed. by F. Ricci, L. Rokach, B. Shapira, 2nd edn. (Springer, Boston, 2015), pp. 353–382

    CrossRef  Google Scholar 

  65. N. Tintarev, J. O’Donovan, A. Felfernig, Human interaction with artificial advice givers. ACM Trans. Interact. Intell. Syst. 6(4), 1–10 (2016)

    CrossRef  Google Scholar 

  66. T. Ulz, M. Schwarz, A. Felfernig, S. Haas, A. Shehadeh, S. Reiterer, M. Stettinger, Human computation for constraint-based recommenders. J. Intell. Inf. Syst. 49(1), 37–57 (2017)

    CrossRef  Google Scholar 

  67. K. Verbert, D. Parra, P. Brusilovsky, E. Duval, Visualizing recommendations to support exploration, transparency and controllability, in International Conference on Intelligent User Interfaces (IUI’13), New York, NY, USA (2013), pp. 351–362

    Google Scholar 

  68. J. Vig, S. Sen, J. Riedl, Tagsplanations: explaining recommendations using tags, in ACM IUI 2009, Sanibel Island, FL,USA (ACM, New York, 2009), pp. 47–56

    Google Scholar 

  69. D. Winterfeldt, W. Edwards, Decision Analysis and Behavioral Research (Cambridge University Press, Cambridge, 1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 The Author(s)

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Felfernig, A., Boratto, L., Stettinger, M., Tkalčič, M. (2018). Explanations for Groups. In: Group Recommender Systems . SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-75067-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75067-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75066-8

  • Online ISBN: 978-3-319-75067-5

  • eBook Packages: EngineeringEngineering (R0)