Skip to main content

Flight 4.0: The Changing Technology Landscape of Aeronautics

  • Chapter
  • First Online:
Advances in Aeronautical Informatics

Abstract

This chapter draws the readers into a comprehensive discussion about the advances in Information and Communication Technologies (ICT) and their influence on the technology landscape of aeronautics. It gives a rough overview of the advances in technical systems from the industrial revolution up until Industry 4.0 and elaborates the reflection of these advancements in aeronautics from the pioneers era toward Flight 4.0. It briefly describes various recent fields of research in ICT such as Cyber-Physical Systems (CPS), Internet of Things (IoT) , wireless networks, multi-core architectures, Service-Oriented Architecture (SOA), cloud computing, big data, and modern software engineering methodologies as the parts of future aeronautical engineering body of knowledge. Thereafter, it describes aeronautical informatics as an establishing interdisciplinary field of study of applied informatics and aeronautics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Collins English Dictionary - Complete & Unabridged 10th Edition (2017), www.dictionary.com/browse/aeronautics

  2. The American Heritage Science Dictionary (2017), www.dictionary.com/browse/aeronautics

  3. R. Blockley, W. Shyy, Encyclopedia of Aerospace Engineering (2010)

    Google Scholar 

  4. V. Hubka, W.E. Eder, Theory of Technical Systems: A Total Concept Theory for Engineering Design (Springer, Berlin, 2012)

    Google Scholar 

  5. B. Lukasch, O. Lilienthal, Der Vogelflug als Grundlage der Fliegekunst (Springer, Berlin, 2014)

    Google Scholar 

  6. P.L. Jakab, Visions of a Flying Machine: The Wright Brothers and the Process of Invention(Smithsonian Institution, 2014)

    Google Scholar 

  7. R.G. Grant, Flight-100 years of aviation. Aircr. Eng. Aerosp. Technol. 75(2) (2003)

    Google Scholar 

  8. D. McRuer, D. Graham, Flight control century: triumphs of the systems approach. J. Guid. Control Dyn. 27(2), 161–173 (2004)

    Article  Google Scholar 

  9. A. Garg, R.I. Linda, T. Chowdhury, Evolution of aircraft flight control system and fly-by-light flight control system. Int. J. Emerg. Technol. Adv. Eng. 3(12), 60–64 (2013)

    Google Scholar 

  10. P. Traverse, I. Lacaze, J. Souyris, Airbus fly-by-wire: a process toward total dependability, in 25th Intenational Congress of the Aeronautical Sciences (2006)

    Google Scholar 

  11. E.L. Wiener, Human factors of advanced technology (glass cockpit) transport aircraft (1989)

    Google Scholar 

  12. N.B. Sarter, D.D. Woods, Pilot interaction with cockpit automation: operational experiences with the flight management system. Int. J. of Aviat. Psychol. 2(4), 303–321 (1992)

    Article  Google Scholar 

  13. C.R. Spitzer, Avionics: Elements, Software and Functions (CRC Press, 2016)

    Google Scholar 

  14. C.M. Christensen, The Innovator’s Dilemma: When New Technologies Cause Great Firms to Fail (Harvard Business Review Press, 2013)

    Google Scholar 

  15. H. Kagermann, J. Helbig, A. Hellinger, W. Wahlster, Recommendations for implementing the strategic initiative INDUSTRIE 4.0: Securing the future of German manufacturing industry; final report of the Industrie 4.0 Working Group (Forschungsunion, 2013)

    Google Scholar 

  16. Siemens, Our future depends on intelligent infrastructures (2014), www.siemens.com/digitalization/public/pdf/siemensintelligent-infrastructure.pdf (visited on 06/25/2017)

  17. R. Kitchin, The real-time city? Big data and smart urbanism. GeoJournal 79(1), 1–14 (2014)

    Article  Google Scholar 

  18. T. Prevot, NextGen technologies for mid-term and far-term air traffic control operations, in IEEE/AIAA 28th Digital Avionics Systems Conference, 2009. DASC’09 (IEEE, 2009), 2-A

    Google Scholar 

  19. P. Ky, B. Miaillier, SESAR: towards the new generation of air traffic management systems in Europe. J. Air Traffic Control 48(1) (2006)

    Google Scholar 

  20. A. Sipe, J. Moore, Air traffic functions in the NextGen and SESAR airspace, in 2009 IEEE/AIAA 28th Digital Avionics Systems Conference (2009). https://doi.org/10.1109/DASC.2009.5347554

  21. FAA JPDO, Integrated Work Plan for the Next Generation Air Transportation System (2008)

    Google Scholar 

  22. K. Sampigethaya, R. Poovendran, Aviation cyber-physical systems: foundations for future aircraft and air transport. Proc. IEEE 101(8), 1834–1855 (2013)

    Article  Google Scholar 

  23. D. Allerton, Principles of Flight Simulation (Wiley, 2009)

    Google Scholar 

  24. E.A. Lee, Cyber physical systems: design challenges, in 2008 11th IEEE International Symposium on Object Oriented real-time Distributed Computing (ISORC) (IEEE, 2008), pp. 363–369

    Google Scholar 

  25. K. Sampigethaya, R. Poovendran, Cyber-physical integration in future aviation information systems, in 2012 IEEE/AIAA 31st Digital Avionics Systems Conference (DASC) (IEEE, 2012), pp. 7C2–1

    Google Scholar 

  26. E.A. Lee, S.A. Seshia, Introduction to Embedded Systems: A Cyberphysical Systems Approach (MIT Press, 2016)

    Google Scholar 

  27. S. Jafer, U. Durak, Tackling the complexity of simulation scenario development in aviation, in Proceedings of the Symposium on Modeling and Simulation of Complexity in Intelligent, Adaptive and Autonomous Systems. MSCIAAS ’17 (Society for Computer Simulation International, Virginia Beach, Virginia, 2017), pp. 4:1–4:10. ISBN: 978-1-5108-4030-0, http://dl.acm.org/citation.cfm?id=3108414.3108418

  28. R.T.C.A. Minimum Aviation System Performance Standards for Automatic Dependent Surveillance Broadcast (ADSB) (RTCA, Incorporated, 2002)

    Google Scholar 

  29. FAA, Automatic Dependent Surveillance: Broadcast (ADS- B) Out Performance Requirements to Support Air Traffic Control (ATC) Service Final Rule, Standard (2010)

    Google Scholar 

  30. S. Ramasamy, R. Sabatini, A. Gardi, T. Kistan, Next generation flight management system for real-time trajectory based operations. Appl. Mech. Mater. 629, 344–349 (2014)

    Article  Google Scholar 

  31. F. Giulietti, L. Pollini, M. Innocenti, Autonomous formation flight. IEEE Control Syst. 20(6), 34–44 (2000)

    Article  Google Scholar 

  32. P. Wellner, W. Mackay, R. Gold, Computer-augmented environments: back to the real world. Commun. ACM 36(7), 24–27 (1993)

    Article  Google Scholar 

  33. M. Weiser, Hot topics-ubiquitous computing. Computer 26(10), 71–72 (1993)

    Article  Google Scholar 

  34. I.A. Essa, Ubiquitous sensing for smart and aware environments. IEEE Pers. Commun. 7(5), 47–49 (2000)

    Article  Google Scholar 

  35. K. Domdouzis, B. Kumar, C. Anumba, Radio-frequency identification (RFID) applications: a brief introduction. Adv. Eng. Inf. 21(4), 350–355 (2007)

    Article  Google Scholar 

  36. F.L. Lewis et al., Smart environments: technologies, protocols, and applications, Wireless Sensor Networks (2004), pp. 11–46

    Chapter  Google Scholar 

  37. V. Coskun, B. Ozdenizci, K. Ok, A survey on near field communication (NFC) technology. Wirel. Pers. Commun. 71(3), 2259–2294 (2013)

    Article  Google Scholar 

  38. J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of Things (IoT): a vision, architectural elements, and future directions. Future Gener. Comput. Syst. 29(7), 1645–1660 (2013)

    Article  Google Scholar 

  39. A. Botta, W. De Donato, V. Persico, A. Pescapé, Integration of cloud computing and internet of things: a survey. Future Gener. Comput. Syst. 56, 684–700 (2016)

    Article  Google Scholar 

  40. P. Mell, T. Grance et al., The NIST definition of cloud computing (2011)

    Google Scholar 

  41. L. Atzori, A. Iera, G. Morabito, The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)

    Article  Google Scholar 

  42. T. Erl, Service-Oriented Architecture: Concepts, Technology, and Design (Pearson Education India, 2005)

    Google Scholar 

  43. M.A. Beyer, D. Laney, The importance of ‘big data’: a definition (Gartner, Stamford, CT, 2012), pp. 2014–2018

    Google Scholar 

  44. M. Chen, S. Mao, Y. Liu, Big data: a survey. Mob. Netw. Appl. 19(2), 171 (2014)

    Article  Google Scholar 

  45. A. Cuzzocrea, I.-Y. Song, K. C. Davis, Analytics over large-scale multidimensional data: the big data revolution! in Proceedings of the ACM 14th International Workshop on Data Warehousing and OLAP (ACM, 2011), pp. 101–104

    Google Scholar 

  46. Wind River, Internet of Things in Commercial Aviation (2015), http://events.windriver.com/wrcd01/wrcm/2016/08/WP-IoTthe-internet-of-things-for-commercial-aviation.pdf. Accessed 25 June 2017

  47. J.S. Meserole, J.W. Moore, What is system wide information management (SWIM)? IEEE Aerosp. Electron. Syst. Mag. 22(5), 13–19 (2007)

    Article  Google Scholar 

  48. B. Marr, How Big Data Drives Success At Rolls-Royce (2015), www.forbes.com/sites/bernardmarr/2015/06/01/how-big-data-drives-success-at-rolls-royce. Accessed 25 June 2017

  49. S. Li, Y. Yang, L. Yang, H. Su, G. Zhang, J. Wang, Civil aircraft big data platform, in 2017 IEEE 11th International Conference on Semantic Computing (ICSC) (IEEE, 2017), pp. 328–333

    Google Scholar 

  50. A. Tyagi, J. Nanda, ATLAS: big data storage and analytics tool for ATM researchers. AIAA Infotech Aerosp. 0577(2016)

    Google Scholar 

  51. N.R.C. Aeronautics Technology Possibilities for 2000: Report of a Workshop (National Academies, 1984)

    Google Scholar 

  52. MIT, Aeronautics and Astronautics (2017), https://ocw.mit.edu/courses/aeronautics-and-astronautics/. Accessed 07 July 2017

  53. E.M. Atkins, Education in the crosscutting sciences of aerospace and computing. J. Aerosp. Inf. Syst. (2014)

    Google Scholar 

  54. K. Steinbuch, Informatik: Automatische Informationsverarbeitung, in SEGNachrichten (Technische Mitteilungen der Standard Elektrik Gruppe)-Firmenzeitschrift 4 (1957), p. 171

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umut Durak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Durak, U. (2018). Flight 4.0: The Changing Technology Landscape of Aeronautics. In: Durak, U., Becker, J., Hartmann, S., Voros, N. (eds) Advances in Aeronautical Informatics. Springer, Cham. https://doi.org/10.1007/978-3-319-75058-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75058-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75057-6

  • Online ISBN: 978-3-319-75058-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics