Skip to main content

Plant Tissue Culture as Potential Option in Developing Climate Resilient Spices

  • Chapter
  • First Online:
Indian Spices

Abstract

According to, Food and Drugs Administration spices are “Aromatic vegetable substance, in the whole, broken, or ground form, whose significant function in food is seasoning rather than nutrition”. Spices have gained a significant position in modern life due to its economic importance and its cuisine, food and medicinal value. In modern era of civilization, global warming and climate changes are becoming a major threat for all living organisms of the globe including spices. Despite the tremendous progress and mechanization in the agriculture sector, it is also experiencing the multidimensional negative impact of climate changes. The natural resources of spices are declining day by day due to deforestation and industrialization. Besides, low productivity, seasonal dependency, high susceptible to diseases and poor genetic variation are major problems for spices cultivation. So production and supply of quality products is becoming a great challenge. In addition, there is a need to develop climate resilient crops in order to face the consequences of global warming in near future. Plant Tissue Culture technology is a proven techniques for generating quality planting materials and developing new elite germplasms of several crops. The regeneration of planting materials by this technique depends on major factors of plant tissue culture methods are type of explants, culture media and culture condition. Modification of media components and using suitable explants under stress conditions, several stress-tolerant/resistant crops have been regenerated through this technique. This chapter focuses to enumerate applicability and scope in the improvement of spices with response to climatic change. Major aspects of plant tissue culture for spices improvement are mainly restricted to somatic embryogenesis, protoplast fusion (i.e. cybrid) while disease free plants can be regenerated through micropropagation. Anther/pollen culture was exclusively reported for haploid/double haploid plant production. Somaclonal variations regenerated through plant tissue culture exhibited the scope to induce variation under laboratory condition. Moreover, secondary metabolites enhancement particularly in spices with pharmaceutical importance and long term conservation of rare germplasms are the areas of intrusion. Since traditional breeding is laborious and time taking process, plant tissue culture may serve as chief tool or as an inseparable add-on tool to recombinant DNA technonology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adaniya S, Shirai D (2001) In vitro induction of tetraploid ginger (Zingiber officinale roscoe) and its pollen fertility and germinability. Sci Hortic 88(4):277–287

    Article  Google Scholar 

  • Ahmad S, Garg M, Tamboli ET, Abdin MZ, Ansari SH (2013) In vitro production of alkaloids: factors, approaches, challenges and prospects. Pharm Rev 7(13):27–33

    Article  CAS  Google Scholar 

  • Aitken-Christie J, Kozai T, Takayama S (1995) Automation in plant tissue culture—general introduction and overview. In Automation and environmental control in plant tissue culture. Springer, Netherlands, pp 1–18

    Book  Google Scholar 

  • Altman A (2003) From plant tissue culture to biotechnology: scientific revolutions, abiotic stress tolerance, and forestry. In Vitro Cell Dev Biol – Plant 39:75. https://doi.org/10.1079/IVP2002379

    Article  CAS  Google Scholar 

  • Anasori P, Asghari G (2009) Effects of light and differentiation on gingerol and zingiberene production in callus culture of Zingiber officinale Rosc. Res Pharm Sci 3(1):59–63

    Google Scholar 

  • Angelova Z, Georgiev S, Roos W (2006) Elicitation of plants. Biotechnol and Biotechnol Eq 20:72–83

    Article  CAS  Google Scholar 

  • Arora DS, Kaur J (1999) Antimicrobial activity of spices. Int J Antimicrob Agents 12(3):257–262

    Article  CAS  Google Scholar 

  • Babu KN, Samsudeen K, Ratnambal MJ, Ravindran PN (1996) Embryogenesis and plant regeneration from ovary derived callus cultures of ginger (Zingiber officinale rose.) J Spices Aromatic Crops 5(2):134–138

    Google Scholar 

  • Babu KN, Geetha SP, Divakaran M, Ravindran PN, Peter KV (1999) In vitro conservation of cardamom (Elettaria cardamom Maton) germplasm. Plant Genet Resour Newsl 119:41–45

    Google Scholar 

  • Babu KN, Yamuna G, Praveen K, Divakaran M, Ravindran PN, Peter KV (2012) Cryopreservation of spices genetic resources. In Igor I. Katkov (ed). Current Frontiers in Cryobiology, InTech-Open Access Publisher. (Croatia) p 457–484

    Google Scholar 

  • Bajpai A, Kalim S, Chandra R, Kamle M (2016) Recurrent somatic embryogenesis and plantlet regeneration in Psidium guajava L. Braz Arch Biol Technol 59(1):1–12

    Google Scholar 

  • Balachandran SM, Bhat SR, Chandel KPS (1990) In vitro clonal multiplication of turmeric (Curcuma spp.) and ginger (Zingiber officinale Rosc). Plant Cell Rep 8(9):521–524

    Article  CAS  Google Scholar 

  • Ballester A, Janeiro LV, Vieitez AM (1997) Cold storage of shoot cultures and alginate encapsulation of shoot tips of Camellia japonica L. and Camellia reticulata Lindley. Sci Hortic 71(1–2):67–78

    Article  Google Scholar 

  • Bates GW, Gaynor JJ, Shekhawat NS (1983) Fusion of plant protoplasts by electric fields. Plant Physiol 72(4):1110–1113

    Article  CAS  Google Scholar 

  • Beckford CL, Norman A (2016) Climate change and quality of planting materials for domestic food production: tissue culture and protected agriculture. In: Beckford C, Rhiney K (eds) Globalization, agriculture and food in the Caribbean. Palgrave Macmillan, London

    Chapter  Google Scholar 

  • Bhagyalakshmi B, Singh NS (1988) Meristem culture and micropropagation of a variety of ginger (Zingiber officinale Rosc.) with a high yield of oleoresin. J Hortic Sci 63(2):321–327

    Article  CAS  Google Scholar 

  • Bhat SR, Chandel KPS, Malik SK (1995) Plant regeneration from various explants of cultivated Piper species. Plant Cell Rep 14(6):398–402

    Article  CAS  Google Scholar 

  • Carlson PS, Smith HH, Dearing RD (1972) Parasexual interspecific plant hybridization. Proc Natl Acad Sci 69(8):2292–2294

    Article  CAS  Google Scholar 

  • Cervelli R, Senaratna T (1995) Economic aspects of somatic embryogenesis. Kluwer Academic Publishers, Dordrecht, pp 29–64

    Google Scholar 

  • Chaudhury R, Malik SK (2004) Genetic conservation of plantation crops and spices using cryopreservation. Indian J Biotechnol 3(3):348–358

    Google Scholar 

  • Cheng Y, Ma RL, Jiao YS, Qiao N, Li TT (2013) Impact of genotype, plant growth regulators and activated charcoal on embryogenesis induction in microspore culture of pepper (Capsicum annuum L). S Afr J Bot 88:306–309

    Article  CAS  Google Scholar 

  • Cocking EC (1960) A method for the isolation of plant protoplasts and vacuoles. Nature 187(4741):962–963

    Article  Google Scholar 

  • Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). Biochem Mol Biology Plants 24:1250–1319

    Google Scholar 

  • Durieu P, Ochatt SJ (2000) Efficient intergeneric fusion of pea (Pisum sativum L.) and grass pea (Lathyrus sativus L.) protoplasts. J Exp Bot 51(348):1237–1242

    CAS  Google Scholar 

  • Ebrahimie E, Habashi AA, Ghareyazie B, Ghannadha M, Mohammadie M (2003) A rapid and efficient method for regeneration of plantlets from embryo explants of cumin (Cuminum cyminum). Plant Cell Tissue Organ Cult 75(1):19–25

    Article  CAS  Google Scholar 

  • Ercan N, Sensoy FA, Sensoy AS (2006) Influence of growing season and donor plant age on anther culture response of some pepper cultivars (Capsicum annuum L). Sci Hortic 110(1):16–20

    Article  Google Scholar 

  • Faisal M, Ahmad N, Anis M (2005) Shoot multiplication in Rauvolfia tetraphylla L. using thidiazuron. Plant Cell Tissue Organ Cult 80(2):187–190

    Article  CAS  Google Scholar 

  • Faria RT, Illg RD (1995) Micropropagation of Zingiber spectabile Griff. Sci Hortic 62(1–2):135–137

    Article  Google Scholar 

  • Forster BP, Heberle-Bors E, Kash KJ, Touraev A (2007) The resurgence of haploids in higher plants. Trends Plant Sci 12(8):368–375

    Article  CAS  Google Scholar 

  • Gamborg OL, Miller R, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50(1):151–158

    Article  CAS  Google Scholar 

  • Gaspar T, Kevers C, Penel C, Greppin H, Reid DM, Thorpe TA (1996) Plant hormones and plant growth regulators in plant tissue culture. In Vitro Cel Develop Biology-Plant 32(4):272–289

    Article  CAS  Google Scholar 

  • Gautheret RJ (1934) Culture du tissus cambial. Comptes Rendus Hebdomadaires des Se’ances de l’Acade’mie des. Science 198:2195–2196

    Google Scholar 

  • Geetha SP, Babu KN, Rema J, Ravindran PN, Peter KV (2000) Isolation of protoplasts from cardamom (Elettaria cardamomum Maton.) and ginger (Zingiber officinale rose.) J Spices Aromatic Crops 9(1):23–30

    Google Scholar 

  • George EF, Hall MA, De Klerk GJ (2008) Plant tissue culture procedure-background. In: Plant propagation by tissue culture. Springer, Netherlands, pp 1–28

    Google Scholar 

  • Germanà MA (2011) Anther culture for haploid and doubled haploid production. Plant Cell Tissue Organ Cult 104(3):283–300

    Article  Google Scholar 

  • Gonzalez-Arnao MT, Lazaro-Vallejo CE, Engelmann F, Gamez-Pastrana R, Martinez-Ocampo YM, Pastelin-Solano MC, Diaz-Ramos C (2009) Multiplication and cryopreservation of vanilla (vanilla Planifolia ‘Andrews)’. In: Vitro Cell Dev Biology–Plant 45(5):574–582

    Google Scholar 

  • Guan Q, Guo Y, Wei Y, Meng F, Zhang Z (2010) Regeneration of somatic hybrids of ginger via chemical protoplast fusion. Plant Cell Tissue Organ Cult 102(3):279–284

    Article  CAS  Google Scholar 

  • Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of Datura. Nature 204:497

    Article  Google Scholar 

  • Guo Y, Bai J, Zhang Z (2007) Plant regeneration from embryogenic suspension-derived protoplasts of ginger (Zingiber officinale Rosc). Plant Cell Tissue Organ Cult 89(2–3):151–157

    Article  Google Scholar 

  • Hall RD, Holden MA, Yeoman MM (1987) The accumulation of phenylpropanoid and capsaicinoid compounds in cell cultures and whole fruit of the chilli pepper, Capsicum frutescens mill. Plant Cell Tissue Organ Cult 8(2):163–176

    Article  CAS  Google Scholar 

  • Hamirah MN, Sani HB, Boyce PC, Sim SL (2010) Micropropagation of red ginger (Zingiber montanum Koenig), a medicinal plant. Asia-Pacific J Mol Biol Biotechnol 18(1):127–130

    Google Scholar 

  • Hussain A, Na S, Nazir H, Shinwari ZK (2011) Tissue culture of black pepper (Piper nigrum L.) in Pakistan. Pak J Bot 43(2):1069–1078

    CAS  Google Scholar 

  • Ibrahim DA, Danial GH, Mosa VM, Khalil BM (2015) Plant regeneration from shoot tips-derived callus of ginger (Zingiber officinale Rosc.) Am J ExpAgric 7(1):55–61

    Google Scholar 

  • Ilahi IHSAN, Jabeen M (1992) Tissue culture studies for micropropagation and extraction of essential oils from Zingiber officinale Rosc. Pak J Bot 24:54–54

    CAS  Google Scholar 

  • Ilyas M (1976) Spices in India. Econ Bot 30(3):273–280

    Article  Google Scholar 

  • Irikova T, Grozeva S, Rodeva V (2011) Anther culture in pepper (Capsicum annuum L.) in vitro. Acta Physiol Plant 33(5):1559–1570

    Article  CAS  Google Scholar 

  • Islam MT, Leunufna S, Dembele DP, Keller EJ (2003) In vitro conservation of four mint (Mentha spp.) accessions. Plant Tissue Culture 13:37–46

    Google Scholar 

  • Jain SC, Pancholi B, Jain R (2012) In-vitro callus propagation and secondary metabolite quantification in Sericostoma pauciflorum. Iranian J Pharm Res: IJPR 11(4):1103–1109

    CAS  Google Scholar 

  • Kaefer CM, Milner JA (2008) The role of herbs and spices in cancer prevention. J Nutr Biochem 19(6):347–361

    Article  CAS  Google Scholar 

  • Kavyashree R (2009) An efficient in vitro protocol for clonal multiplication of ginger–var. Varada. Indian J Biotechnol 8(3):328–331

    Google Scholar 

  • Khanpour-Ardestani N, Sharifi M, Behmanesh M (2015) Establishment of callus and cell suspension culture of Scrophularia striata Boiss.: an in vitro approach for acteoside production. Cytotechnology 67(3):475–485

    Article  CAS  Google Scholar 

  • Koleva-Gudeva L, Trajkova F, Dimeska G, Spasenoski M (2008) Androgenesis efficiency in anther culture of pepper (Capsicum annuum L.). In: IV Balkan Symposium on Vegetables and Potatoes 830, p 183–190

    Google Scholar 

  • Kunnumakkara AB, Koca C, Dey S, Gehlot P, Yodkeeree S, Danda D, Sung B, Aggarwal BB (2009) Traditional uses of spices: an overview. Molecular targets and therapeutic uses of spices. World Scientific Publishing Co. Pte. Ltd, Singapore, pp 1–24

    Book  Google Scholar 

  • Lainé E, David A (1994) Regeneration of plants from leaf explants of micropropagated clonal Eucalyptus grandis. Plant Cell Rep 13(8):473–476

    Article  Google Scholar 

  • Lantos C, Juhász AG, Vági P, Mihály R, Kristóf Z, Pauk J (2012) Androgenesis induction in microspore culture of sweet pepper (Capsicum annuum L.) Plant Biotechnol Rep 6(2):123–132

    Article  Google Scholar 

  • Larkin PJ, Scowcroft SC (1981) Somaclonal variation-a novel source of variability from cell culture for plant improvement. Theor Appl Genet 60:197–121

    Article  CAS  Google Scholar 

  • Luitel BP, Kang WH (2013) In vitro androgenic response of minipaprika (Capsicum annuum L.) genotypes in different culture media. Hortic Environ Biotechnol 54(2):162–171

    Article  Google Scholar 

  • Maheswaran G, Williams EG (1984) Direct somatic embryoid formation on immature embryos of Trifolium repens, T. pratense and Medicago sativa, and rapid clonal propagation of T. repens. Ann Bot 54(2):201–212

    Article  Google Scholar 

  • Maiti CS, Yepthomi GI (2015) In vitro multiplication for disease free healthy seed rhizome production of ginger (Zingiber officinale). IJB 1(4):5–12

    Google Scholar 

  • Mathew RE, Sankar PD (2014) Comparison of major secondary metabolites quantified in elicited cell cultures, non-elicited cell cultures, callus cultures and field grown plants of Ocimum. Int J Pharm Pharm Sci 6:102–106

    Google Scholar 

  • Morel G, Martin C (1952) Gue’rison de dahlias attaints d’une maladie a´ virus. Comptes Rendus Hebdomadaires des Se’ances de l’Acade’mie des. Science 235:1324–1325

    CAS  Google Scholar 

  • Mulabagal V, Tsay HS (2004) Plant cell cultures-an alternative and efficient source for the production of biologically important secondary metabolites. Int J Appl Sci Eng 2(1):29–48

    Google Scholar 

  • Munyon IP, Hubstenberger JF, Phillips GC (1989) Origin of plantlets and callus obtained from chile pepper anther cultures. In Vitro Cell Dev Biology 25(3):293–296

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Murthy HN, Lee EJ, Paek KY (2014) Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tissue Organ Cult 118(1):1–16

    Article  CAS  Google Scholar 

  • Nair RR, Gupta SD (2006) High-frequency plant regeneration through cyclic secondary somatic embryogenesis in black pepper (Piper nigrum L.) Plant Cell Rep 24(12):699–707

    Article  CAS  Google Scholar 

  • Nayak S, Naik PK (2006) Factors effecting in vitro microrhizome formation and growth in Curcuma longa L. and improved field performance of micropropagated plants. Sci Asia 32:31–37

    Article  CAS  Google Scholar 

  • Olszewska D, Kisiała A, Nowaczyk P (2011) The assessment of doubled haploid lines obtained in pepper (Capsicum annuum L.) anther culture. Folia Horticulturae 23(2):93–99

    Article  Google Scholar 

  • Pandey RY, Sagwansupyakorn C, Sahavacharin O, Thaveechai N (1997) In vitro propagation of ginger (Zingiber officinale roscoe). Kasetsart J (Nat Sci) 31(1):81–86

    Google Scholar 

  • Patel K, Srinivasan K (2004) Digestive stimulant action of spices: a myth or reality. Indian J Med Res 119:167–179

    Google Scholar 

  • Peter KV, Babu NK, Minoo D (2006) Spices biotechnology. J Hortic Sci 1(1):1–14

    Google Scholar 

  • Philip VJ, Nainar SAZ (1986) Clonal propagation of Vanilla planifolia (Salisb.) Ames using tissue culture. J Plant Physiol 122(3):211–215

    Article  Google Scholar 

  • Philip VJ, Joseph D, Triggs GS, Dickinson NM (1992) Micropropagation of black pepper (Piper nigrum Linn.) through shoot tip cultures. Plant Cell Rep 12(1):41–44

    Article  CAS  Google Scholar 

  • Pierik RLM (1991) Micropropagation of ornamental plants. Acta Hortic 289:45–53

    Article  Google Scholar 

  • Prutpongse P, Gavinlertvatana P (1992) In vitro micropropagation of 54 species from 15 genera of bamboo. Hortscience 27(5):453–454

    CAS  Google Scholar 

  • Rahman MM, Amin MN, Jahan HS, Ahmed R (2004) In vitro regeneration of plantlets of Curcuma longa Linn. A valuable spice plant in Bangladesh. Asian J Plant Sci 3(3):306–309

    Article  Google Scholar 

  • Rai M, Kalia R, Singh R, Gangola MP, Dhawan A (2011) Developing stress-tolerant plants through in vitro selection—an overview of the recent progress. Environ Exp Bot 71:89–98. https://doi.org/10.1016/j.envexpbot.2010.10.021

    Article  Google Scholar 

  • Ramawat KG, Sharma R, Soni SS (2000) Medicinal plants. In: Ramawat KG, Merillon JM (eds) Biotechnology: secondary metabolites. IBH Publishing Co, Pvt. Ltd, Oxford, pp 356–356

    Google Scholar 

  • Rao PL (1996) Plant biotechnology: promises and challenges. Def Sci J 46(1):31–39

    Article  Google Scholar 

  • Rao SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20(2):101–153

    Article  CAS  Google Scholar 

  • Rathore MS, Shekhawat NS (2008) Incredible spices of India: from traditions to cuisine. Am-Eurasian J Botany 1(3):85–89

    Google Scholar 

  • Roopadarshini V, Gayatri MC (2012) Isolation of somaclonal variants for morphological and biochemical traits in Curcuma longa (turmeric). Res Plant Biology 2(3):31–37

    Google Scholar 

  • Rout GR, Das P (1997) In vitro organogenesis in ginger (Zingiber officinale Rosc.) J Herbs, Spices Med Plants 4(4):41–51

    Article  Google Scholar 

  • Rout GR, Palai SK, Samantaray S, Das P (2001) Effect of growth regulator and culture conditions on shoot multiplication and rhizome formation in ginger (Zingiber officinale Rosc.) in vitro. In Vitro Cel Develop Biology-Plant 37(6):814–819

    Article  CAS  Google Scholar 

  • Rout GR, Mohapatra A, Jain SM (2006) Tissue culture of ornamental pot plant: a critical review on present scenario and future prospects. Biotechnol Adv 24(6):531–560

    Article  CAS  Google Scholar 

  • Samsudeen K, Babu KN, Divakaran M, Ravindran PN (2000) Plant regeneration from anther derived callus cultures of ginger (Zingiber officinale Rosc.) J Hortic Sci Biotechnol 75(4):447–450

    Article  CAS  Google Scholar 

  • Sato H, Enomoto S, Oka S, Hosomi K, Ito Y (1993) Plant regeneration from protoplasts of peppermint (Mentha piperita L). Plant Cell Rep 12(10):546–550

    Article  CAS  Google Scholar 

  • Sato H, Yamada K, Mii M, Hosomi K, Okuyama S, Uzawa M, Ishikawa U, Ito Y (1996) Production of an interspecific somatic hybrid between peppermint and gingermint. Plant Sci 115(1):101–107

    Article  CAS  Google Scholar 

  • Sharma TR, Singh BM (1997) High-frequency in vitro multiplication of disease-free Zingiber officinale Rosc. Plant Cell Rep 17(1):68–72

    Article  CAS  Google Scholar 

  • Singh SR, Singh R, Kalia S, Dalal S, Dhawan AK, Kalia RK (2013) Limitations, progress and prospects of application of biotechnological tools in improvement of bamboo—a plant with extraordinary qualities. Physiol Mol Biol Plants 19(1):21–41

    Article  CAS  Google Scholar 

  • Srinivasan K (2005) Role of spices beyond food flavoring: nutraceuticals with multiple health effects. Food Rev Int 21(2):167–188

    Article  CAS  Google Scholar 

  • Subbarayudu S, Naik BS, Devi HS, Bhau BS, Khan PSSV (2014) Microsporogenesis and pollen formation in Zingiber officinale roscoe. Plant Syst Evol 300(4):619–632

    Article  Google Scholar 

  • Sundararaj SG, Agrawal A, Tyagi RK (2010) Encapsulation for in vitro short-term storage and exchange of ginger (Zingiber officinale Rosc.) germplasm. Sci Hortic 125(4):761–766

    Article  CAS  Google Scholar 

  • Supena ED, Suharsono S, Jacobsen E, Custers JB (2006) Successful development of a shed-microspore culture protocol for doubled haploid production in Indonesian hot pepper (Capsicum annuum L.) Plant Cell Rep 25:1–10

    Article  CAS  Google Scholar 

  • Takebe I, Labib G, Melchers G (1971) Regeneration of whole plants from isolated mesophyll protoplasts of tobacco. Naturwissenschaften 58(6):318–320

    Article  Google Scholar 

  • Tefera W, Wannakrairoj S (2004) Micropropagation of krawan (Amomum krervanh Pierre ex Gagnep). Sci Asia 30:9–15

    Article  CAS  Google Scholar 

  • Thiaman KV (1974) Fifty years of plant hormone research. Plant Physiol 54:450–453

    Article  Google Scholar 

  • Thorpe TA (2007) History of plant tissue culture. Mol Biotechnol 37(2):169–180

    Article  CAS  Google Scholar 

  • Tyagi RK, Yusuf A, Dua P, Agrawal A (2004) In vitro plant regeneration and genotype conservation of eight wild species of curcuma. Biol Plant 48(1):129–132

    Article  CAS  Google Scholar 

  • Tyagi RK, Agrawal A, Mahalakshmi C, Hussain Z, Tyagi H (2007) Low-cost media for in vitro conservation of turmeric (Curcuma longa L.) and genetic stability assessment using RAPD markers. In Vitro Cell Develop Biology–Plant 43(1):51–58

    Article  CAS  Google Scholar 

  • Tyagi RK, Goswami R, Sanayaima R, Singh R, Tandon R, Agrawal A (2009) Micropropagation and slow growth conservation of cardamom (Elettaria cardamomum Maton). In Vitro Cel Develop Biology-Plant 45(6):721–729

    Article  Google Scholar 

  • Villalobos VM, Engelmann F (1995) Ex situ conservation of plant germplasm using biotechnology. World J Microbiol Biotechnol 11(4):375–382

    Article  CAS  Google Scholar 

  • Wang LH, Zhang BX (2001) Advancement in the anther culture of Capsicum annuum L. China Veg 3:52–53

    Google Scholar 

  • Yamuna G, Sumathi V, Geetha SP, Praveen K, Swapna N, Nirmal Babu K (2007) Cryopreservation of in vitro grown shoots of ginger (Zingiber officinale Rosc.) CryoLetters 28(4):241–252

    CAS  Google Scholar 

  • Yasodha R, Sumathi R, Gurumurthi K (2004) Micropropagation for quality propagule production in plantation forestry. Indian J Biotechnol 3(2):159–170

    Google Scholar 

  • Yunus MF, Aziz MA, Kadir MA, Rashid AA (2012) In vitro propagation of Etlingera elatior (Jack)(torch ginger). Sci Hortic 135:145–150

    Article  CAS  Google Scholar 

  • Yusuf A, Tyagi RK, Malik SK (2001) Somatic embryogenesis and plantlet regeneration from leaf segments of Piper colubrinum. Plant Cell Tissue Organ Cult 65(3):255–258

    Article  CAS  Google Scholar 

  • Zhong JJ (2001) Biochemical engineering of the production of plant-specific secondary metabolites by cell suspension cultures. Plant Cell 72:1–26

    Article  CAS  Google Scholar 

  • http://economictimes.indiatimes.com/news/economy/agriculture/indian-spices-export-peaks-to-a-new-high/articleshow/59143904.cms. Accessed 4 Oct 2017

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, M.N., Ray, S.S. (2018). Plant Tissue Culture as Potential Option in Developing Climate Resilient Spices. In: Sharangi, A. (eds) Indian Spices. Springer, Cham. https://doi.org/10.1007/978-3-319-75016-3_15

Download citation

Publish with us

Policies and ethics