Advertisement

Local Treatment of Brain Tumors and the Blood-Brain Barrier

Chapter

Abstract

Since the half of the past century, attempts to locally treat intracranial neoplasms have grown. From pioneering interstitial seeds of various materials (radioactive, non-radioactive) with or without the application of ElectroMagnetic Field (EMF), recently new interest was elicited by the possibilities offered by the nanotechnologies. The blocking activity of the Blood-Brain Barrier (BBB) represents main problem for every treatment of brain neoplasms. Shortly, here we summarize some aspects of the blood-brain barrier problem in the perspective of more efficient therapeutic approaches, like the use of nanoparticle and their theranostic possibilities.

Notes

Aknowledgements

The Authors thank the grants RVO 61388971, MSMT COST CZ LD 15135, UniCredit Bank CZ, Iginio Longo, Tristano Testa and CAMIC CZ Fund. This work was developed in the framework of COST Action MiMed TD1301 WG2.

References

  1. 1.
    Ehrlich, P.: Das Sauerstoffbedürfnis des Organismus. Eine Farbenanalytische Studie, pp. 69–72. Hirschwald, Berlin (1885)Google Scholar
  2. 2.
    Goldman, E.E.: Die aussere und innere Sekretion des gesunden und kranken Organismus im Lichte der vitalen Farbung. Beitr. Z. Klin. Chir. 64(192), 24 (1909)Google Scholar
  3. 3.
    Lewandowski, M.: Zur Lehre von der Cerebrospinalflüssigkeit. Z. Klin. Med. 40, 480–494 (1900)Google Scholar
  4. 4.
    Ribatti, D., Nico, B., Crivellato, E., Artico, M.: Development of the blood–brain barrier: a historical point of view. Anat. Rec. B New Anat. 289(1), 3–8 (2006)CrossRefGoogle Scholar
  5. 5.
    Friedemann, U.: Blood-brain barrier. Physiol. Rev. 22, 125–145 (1942)CrossRefGoogle Scholar
  6. 6.
    Dyrna, F., Hanske, S., Krueger, M., Bechmann, I.: The blood-brain barrier. J Neuroimmune Pharmacol. 8(4), 763–773 (2013)CrossRefGoogle Scholar
  7. 7.
    Obermeier, B., Daneman, R., Ransohoff, R.M.: Development, maintenance and disruption of the blood–brain barrier. Nat. Med. 19, 1584–1596 (2013)CrossRefGoogle Scholar
  8. 8.
    Alyautdin, R., Khalin, I., Nafeeza, M.I., Haron, M.H., Kuznetsov, D.: Nanoscale drug delivery systems and the blood–brain barrier. Int. J. Nanomed. 9(1), 795–811 (2014)Google Scholar
  9. 9.
    Gabathuler, R.: Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases. Neurobiol. Dis. 37, 48–57 (2010)CrossRefGoogle Scholar
  10. 10.
    Begley, D.J.: Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol. Ther. 104, 29–45 (2004)CrossRefGoogle Scholar
  11. 11.
    Cipolla, M.J.: Barriers of the CNS. In: Granger, D.N., Granger, J. (eds.) The Cerebral Circulation. Morgan & Claypool Life Sciences, San Rafael (CA) (2009)Google Scholar
  12. 12.
    Abbott, N.J., Patabendige, A., Dolman, D., Yusof, S.R., Begley, D.J.: Structure and function of the blood–brain barrier. Neurobiol. Dis. 37, 13–25 (2010)CrossRefGoogle Scholar
  13. 13.
    Chodobski, A., Zink, B.J., Szmydynger-Chodobska, J.: Blood-brain barrier pathophysiology in traumatic brain injury. Transl. Stroke Res. (2011)Google Scholar
  14. 14.
    Cipolla, M.J., Crete, R., Vitullo, L., Rix, R.D.: Transcellular transport as a mechanism of blood-brain barrier disruption during stroke. Front Biosci. 9, 777–785 (2004)CrossRefGoogle Scholar
  15. 15.
    Neuwelt, E.A., Bauer, B., Fahlke, C., Fricker, G., Iadecola, C., Janigro, D., Leybaert, L., Molnár, Z., O’Donnell, M.E., Povlishock, J.T., Saunders, N.R., Sharp, F., Stanimirovic, D., Watts, R.J., Drewes, L.R.: Engaging neuroscience to advance translational research in brain barrier biology. Nat. Rev. Neurosci. 12, 169–182 (2011)Google Scholar
  16. 16.
    Patching, S.G.: Glucose transporters at the blood-brain barrier: function, regulation and gateways for drug delivery. Mol Neurobiol. (2016) [Epub ahead of print]Google Scholar
  17. 17.
    Zlokovic, B.V.: The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57(2), 178–201 (2008)CrossRefGoogle Scholar
  18. 18.
    Watabe, M., Nagafuchi, A., Tsukita, S., Takeichi, M.J.: Induction of polarized cell–cell association and retardation of growth by activation of the E-cadherin–catenin adhesion system in a dispersed carcinoma line. Cell Biol. 127, 247–256 (1994)CrossRefGoogle Scholar
  19. 19.
    Wolburg, H., Noell, S., Mack, A., Wolburg-Buchholz, K., Fallier-Becker, P.: Brain endothelial cells and the glio-vascular complex. Cell Tissue Res. 335, 75–96 (2009)CrossRefGoogle Scholar
  20. 20.
    Farell, C.L., Pardridge, W.M.: Blood–brain-barrier glucose transporter is asymmetrically distributed on brain capillary endothelial luminal and abluminal membranes: an electronic microscopic immunogold study. Proc. Nat. Acad. Sci. U.S.A. 88, 5779–5783 (1999)CrossRefGoogle Scholar
  21. 21.
    Brightman, M.W., Reese, T.S.: Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol. 40, 648–677 (1969)CrossRefGoogle Scholar
  22. 22.
    Correale, J., Villa, A.: Cellular elements of the blood–brain barrier. Neurochem. Res. 34, 2067–2077 (2009)CrossRefGoogle Scholar
  23. 23.
    Reese, T.S., Karnovsky, M.J.: Fine structural localization of a blood brain barrier to exogenous peroxidase. J. Cell. Biol. 34, 207–217 (1967)CrossRefGoogle Scholar
  24. 24.
    Saraiva, C., Praça, C., Ferreira, R., Santos, T., Ferreira, L., Bernardino, L.: Nanoparticle-mediated brain drug delivery: overcoming lood–brain barrier to treat neurodegenerative diseases. J. Control. Release 235, 34–47 (2016). ISSN 0168-3659Google Scholar
  25. 25.
    Hawkins, R.A., O’Kane, R.L., Simpson, I.A.: Structure of the blood–brain barrier and its role in the transport of amino acids. J. Nutr. 136(1 Suppl), 218S–226S (2006)CrossRefGoogle Scholar
  26. 26.
    Borges-Walmsley, M.I., McKeegan, K.S., Walmsley, A.R.: Structure and function of efflux pumps that confer resistance to drugs. Biochem. J. 376(Pt 2), 313–338 (2003)CrossRefGoogle Scholar
  27. 27.
    Daneman, R., Rescigno, M.: The gut immune barrier and the blood–brain barrier: are they so different? Immunity 31, 722–735 (2009)CrossRefGoogle Scholar
  28. 28.
    Khatri, R., McKinney, A.M., Swenson, B., Janardhan, V.: Blood–brain barrier, reperfusion injury, and hemorrhagic transformation in acute ischemic stroke. Neurology. 79(13 Suppl 1), S52–57 (2012)Google Scholar
  29. 29.
    Lee, H., Pienaar, I.S.: Disruption of the blood–brain barrier in Parkinson’s disease: curse or route to a cure? Front. Biosci. (Landmark Ed.) 19, 272–280 (2014)Google Scholar
  30. 30.
    Luissint, A.C., Artus, C., Glacial, F., Ganeshamoorthy, K., Couraud, P.-O.: Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation. Fluids Barriers CNS 9, 23 (2012)Google Scholar
  31. 31.
    Kyle, S., Saha, S.: Nanotechnology for the detection and therapy of stroke. Adv. Healthc. Mater. 3, 1703–1720 (2014)Google Scholar
  32. 32.
    da Fonseca, A.C.C., Matias, D., Garcia, C., Amaral, R., Geraldo, L.H., Freitas, C. et al.: The impact of microglial activation on blood–brain barrier in brain diseases. Front. Cell. Neurosci. 8, 362 (2014)Google Scholar
  33. 33.
    Jiao, H., Wang, Z., Liu, Y., Wang, P., Xue, Y.: Specific role of tight junction proteins claudin-5, occludin, and ZO-1 of the blood–brain barrier in a focal cerebral ischemic insult. J. Mol. Neurosci. 44, 130–139 (2011)CrossRefGoogle Scholar
  34. 34.
    Yang, Y., Rosenberg, G.A.: Blood–brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke 42, 3323–3328 (2011)CrossRefGoogle Scholar
  35. 35.
    Zlokovic, B.V.: Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat. Rev. Neurosci. 12(12), 723–738 (2011)CrossRefGoogle Scholar
  36. 36.
  37. 37.
    Deane, R., Yan, S.D., Submamaryan, R.K., LaRue, B., Jovanovic, S., Hogg, E., et al.: RAGE mediates amyloid-beta peptide transport across the blood–brain barrier and accumulation in brain. Nat. Med. 9, 907–913 (2003)CrossRefGoogle Scholar
  38. 38.
    Kook, S.Y., Seok Hong, H., Moon, M., Mook-Jung, I.: Disruption of blood–brain barrier in Alzheimer disease pathogenesis. Tissue Barriers. 1(2), e23993 (2013)Google Scholar
  39. 39.
  40. 40.
    Doria, M., Maugest, L., Moreau, T., Lizard, G., Vejux, A.: Contribution of cholesterol and oxysterols to the pathophysiology of Parkinson’s disease. Free Radic. Biol. Med. 101, 393–400 (2016)CrossRefGoogle Scholar
  41. 41.
    Fernandez, H.H.: Updates in the medical management of Parkinson disease. Cleve Clin. J. Med. 79, 28–35 (2012)CrossRefGoogle Scholar
  42. 42.
    Haussermann, P., Kuhn, W., Przuntek, H., Muller, T.: Integrity of the blood–cerebrospinal fluid barrier in early Parkinson’s disease. Neurosci. Lett. 300, 182–184 (2001)CrossRefGoogle Scholar
  43. 43.
    Kortekaas, R., Leenders, K.L., Van Oostrom, J.C.H., Vaalburg, W., Bart, J., Willemsen, A.T.M., et al.: Blood–brain barrier dysfunction in parkinsonian midbrain in vivo. Ann. Neurol. 57, 176–179 (2005)CrossRefGoogle Scholar
  44. 44.
    Pisani, V., Stefani, A., Pierantozzi, M., Natoli, S., Stanzione, P., Franciotta, D., et al.: Increased blood-cerebrospinal fluid transfer of albumin in advanced Parkinson’s disease. J. Neuroinflamm. 8(9), 188 (2012)Google Scholar
  45. 45.
    Gallego, O.: Nonsurgical treatment of recurrent glioblastoma. Curr. Oncol. 22(4), e273–e281 (2015)CrossRefGoogle Scholar
  46. 46.
    Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J., Smigal, C., Thun, M.J.: CA Cancer J. Clin. 56(2), 106–130 (2006)Google Scholar
  47. 47.
    Watkins, S., Robel, S., Kimbrough, I.F., Robert, S.M., Ellis-Davies, G., Sontheimer, H.: Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells. Nat. Commun. 19(5), 4196 (2014)Google Scholar
  48. 48.
    Winkler, F., Kienast, Y., Fuhrmann, M., Von Baumgarten, L., Burgold, S., Mitteregger, G., Kretzschmar, H., Herms, J.: Imaging glioma cell invasion in vivo reveals mechanisms of dissemination and peritumoral angiogenesis. Glia 57(12), 1306–1315 (2009)CrossRefGoogle Scholar
  49. 49.
    Humle, N., Johnsen, K.B., Arendt, G.A., Nielsen, R.P., Moos, T., Thomsen, L.B.: Targeted vascular drug delivery in cerebral cancer. Curr. Pharm. Des. 22(35), 5487–5504 (2016)CrossRefGoogle Scholar
  50. 50.
    Liu, H.L., Fan, C.H., Ting, C.Y., Yeh, C.K.: Combining microbubbles and ultrasound for drug delivery to brain tumors: current progress and overview. Theranostics 4(4), 432–444 (2014)CrossRefGoogle Scholar
  51. 51.
    Pardridge, W.M.: The blood–brain barrier: bottleneck in brain drug development. NeuroRx 2, 3–14 (2005)CrossRefGoogle Scholar
  52. 52.
    Caraglia, M., De Rosa, G., Salzano, G., Santini, D., Lamberti, M., Sperlongano, P., Lombardi, A., Abbruzzese, A., Addeo, R.: Nanotech revolution for the anti-cancer drug delivery through blood-brain barrier. Curr. Cancer Drug Targets 12(3), 186–196 (2012)CrossRefGoogle Scholar
  53. 53.
    Trahan, M.A., Kahng, S., Fisher, A.B., Hausman, N.L.: Behavior-analytic research on dementia in older adults. J. Appl. Behav. Anal. 44, 687–691 (2011)CrossRefGoogle Scholar
  54. 54.
    Kroll, R.A., Pagel, M.A., Muldoon, L.L., Roman-Goldstein, S., Fiamengo, S.A., Neuwelt, E.A.: Improving drug delivery to intracerebral tumor and surrounding brain in a rodent model: a comparison of osmotic versus bradykinin modification of the blood–brain and/or blood-tumor barriers. Neurosurgery 43, 879–886 (1998)CrossRefGoogle Scholar
  55. 55.
    Polly, J.W., Olson, K.L., Chism, J.P.: Getting into the brain. approaches to enhance brain drug delivery. CNS Drug. 23, 35–58 (2009)Google Scholar
  56. 56.
    Rhaleb, N., Télémaque, S., Rouisson, N., et al.: Structure-activity studies of bradykinin and related peptides. B2-receptor antagonists. Hypertension 17, 107–115 (1991)CrossRefGoogle Scholar
  57. 57.
    Matsukado, K., Sugita, M.: Intracarotid low dose bradykinin infusion selectively increases tumor permeability through activation of bradykinin B2 receptors in malignant gliomas. Brain Res. 4, 10–15 (1998)CrossRefGoogle Scholar
  58. 58.
    Aryal, M., Vykhodtseva, N., Zhang, Y.Z., McDannold, N.: Multiple sessions of liposomal doxorubicin delivery via focused ultrasound mediated blood–brain barrier disruption: a safety study. J. Control. Release 28(204), 60–69 (2015)CrossRefGoogle Scholar
  59. 59.
    Cho, C.W., Liu, Y., Cobb, W., et al.: Ultrasound induced mild hyperthermia as a novel approach to increase drug uptake in brain microvessel endothelial cells. Pharm. Res. 19(8), 1123–1129 (2002)CrossRefGoogle Scholar
  60. 60.
    Park, J., Aryal, M., Vykhodtseva, N., Zhang, Y.Z., McDannold, N.: Evaluation of permeability, doxorubicin delivery, and drug retention in a rat brain tumor model after ultrasound-induced blood-tumor barrier disruption. J. Control. Release 2016 Oct 11. pii: S0168-3659(16)30955-5Google Scholar
  61. 61.
    Ding, G.R., Qiu, L.B., Wang, X.W., Li, K.C., Zhou, Y.C., Zhou, Y., Zhang, J., Zhou, J.X., Li, Y.R., Guo, G.Z.: EMP-induced alterations of tight junction protein expression and disruption of the blood-brain barrier. Toxicol. Lett. 196(3), 154–160 (2010)CrossRefGoogle Scholar
  62. 62.
    Frey, A.H., Feld, S.R., Frey, B.: Neural function and behavior: defining the relationship. Ann. N. Y. Acad. Sci. 247, 433–439 (1975)CrossRefGoogle Scholar
  63. 63.
    Salford, L.G., Nittby, H., Brun, A., Grafström, G., Eberhardt, J.L., Malmgren, L., Persson, B.R.R.: Non-thermal effects of EMF upon the mammalian brain: the Lund experience. Environmentalist 27, 493–500 (2007)CrossRefGoogle Scholar
  64. 64.
    Amin, F.U., Hoshiar, A.K., Do, T.D., Noh, Y., Shah, S.A., Khan, M.S., Yoon, J., Kim, M.O.: Osmotin-loaded magnetic nanoparticles with electromagnetic guidance for the treatment of Alzheimer’s disease. Nanoscale 9(30), 10619–10632 (2017)CrossRefGoogle Scholar
  65. 65.
    Do, T.D., Ul Amin, F., Noh, Y., Kim, M.O., Yoon, J.: Guidance of magnetic nanocontainers for treating Alzheimer’s disease using an electromagnetic targeted drug-delivery actuator. J. Biomed. Nanotechnol. 12(3), 569–574 (2016)CrossRefGoogle Scholar
  66. 66.
    Kuo, Y.C., Lu, C.H.: Modulation of efflux proteins by electromagnetic field for delivering azidothymidine and saquinavir into the brain. Colloids Surf. B Biointerfaces 1(91), 291–295 (2012)CrossRefGoogle Scholar
  67. 67.
    Qiu, L.B., Ding, G.R., Li, K.C., Wang, X.W., Zhou, Y., Zhou, Y.C., Li, Y.R., Guo, G.Z.: The role of protein kinase C in the opening of blood-brain barrier induced by electromagnetic pulse. Toxicology 273(1–3), 29–34 (2010)CrossRefGoogle Scholar
  68. 68.
    Zhou, J.X., Ding, G.R., Zhang, J., Zhou, Y.C., Zhang, Y.J., Guo, G.Z.: Detrimental effect of electromagnetic pulse exposure on permeability of in vitro blood–brain-barrier model. Biomed. Environ. Sci. 26(2), 128–137 (2013)Google Scholar
  69. 69.
    Sirav, B., Seyhan, N.: Blood-brain barrier disruption by continuous-wave radio frequency radiation. Electromagn. Biol. Med. 28(2), 215–222 (2009)CrossRefGoogle Scholar
  70. 70.
    Hao, Y., Yang, X., Chen, C., Yuan-Wang, Wang, X., Li, M., Yu, Z.: STAT3 signalling pathway is involved in the activation of microglia induced by 2.45 GHz electromagnetic fields. Int. J. Radiat. Biol. 86(1), 27–36 (2010)CrossRefGoogle Scholar
  71. 71.
    Yang, L.L., Zhou, Y., Tian, W.D., Li, H.J., Li, K.-C., Miao, X., An, G.Z., Wang, X.W., Guo, G.Z., Ding, G.R.: Electromagnetic pulse activated brain microglia via the p38 MAPK pathway. Neurotoxicology 52, 144–149 (2016)CrossRefGoogle Scholar
  72. 72.
    Yang, X., He, G., Hao, Y., Chen, C., Li, M., Wang, Y., Zhang, G., Yu, Z.: The role of the JAK2-STAT3 pathway in pro-inflammatory responses of EMF-stimulated N9 microglial cells. J. Neuroinflamm. 9(7), 54 (2010)CrossRefGoogle Scholar
  73. 73.
    Pavan, B., Dalpiaz, A., Ciliberti, N., Biondi, C., Manfredini, S., Vertuani, S.: Progress in drug delivery to the central nervous system by the prodrug approach. Molecules 13(5), 1035–1065 (2008)CrossRefGoogle Scholar
  74. 74.
    Begley, D.J.: The blood–brain barrier: principles for targeting peptides and drugs to the central nervous system. J. Pharm. Pharmacol. 4, 136–146 (1996)CrossRefGoogle Scholar
  75. 75.
    Denora, N., Trapani, A., Laquintana, V., Lopedota, A., Tropani, G.: Recent advances in medicinal chemistry and pharmaceutical technology-strategies for drug delivery to the brain. Curr. Top. Med. Chem. 9, 182–196 (2009)CrossRefGoogle Scholar
  76. 76.
    Mäger, I., Meyer, A.H., Li, J., Lenter, M., Hildebrandt, T., Leparc, G., Wood, M.J.: Targeting blood-brain-barrier transcytosis—perspectives for drug delivery. Neuropharmacology. 2016 Aug 22. pii: S0028-3908(16)30361-6.  https://doi.org/10.1016/j.neuropharm.2016.08.025 (Epub ahead of print)
  77. 77.
    Moghimi, S.M., Hunter, A.C., Murray, J.C.: Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53, 1283–1318 (2001)Google Scholar
  78. 78.
    Matsumura, Y., Maeda, H.: “A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs”. Cancer Res. 46, 6387–6392 (1986)Google Scholar
  79. 79.
    Bruun, J., Larsen, T.B., Jølck, R.I., Eliasen, R., Holm, R., Gjetting, T., Andresen, T.L.: Investigation of enzyme-sensitive lipid nanoparticles for delivery of siRNA to blood-brain barrier and glioma cells. Int. J. Nanomedicine. 24(10), 5995–6008 (2015)Google Scholar
  80. 80.
    Huang, S., Shao, K., Liu, Y., Kuang, Y., Li, J., An, S., Guo, Y., Ma, H., Jiang, C.: Tumor-targeting and microenvironment-responsive smart nanoparticles for combination therapy of antiangiogenesis and apoptosis. ACS Nano 7(3), 2860–2871 (2013)CrossRefGoogle Scholar
  81. 81.
    Nakamura, Y., Mochida, A., Choyke, P.L., Kobayashi, H.: Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug. Chem. 27(10), 2225–2238 (2016)CrossRefGoogle Scholar
  82. 82.
    Vannucci, L., Falvo, E., Failla, C.M., Carbo, M., Fornara, M., Canese, R., Cecchetti, S., Rajsiglova, L., Stakheev, D., Krizan, J., Boffi, A., Carpinelli, G., Morea, V., Ceci, P.: In vivo targeting of cutaneous melanoma using an melanoma stimulating hormone-engineered human protein cage with fluorophore and magnetic resonance imaging tracers. J. Biomed. Nanotechnol. 11(1), 81–92 (2015)CrossRefGoogle Scholar
  83. 83.
    Elzoghby, A.O., Abd-Elwakil, M.M., Abd-Elsalam, K., Elsayed, M.T., Hashem, Y., Mohamed, O.: Natural polymeric nanoparticles for brain-targeting: implications on drug and gene delivery. Curr. Pharm. Des. 22(22), 3305–3323 (2016)CrossRefGoogle Scholar
  84. 84.
    Mishra, D., Hubenak, J.R., Mathur A.B.: Nanoparticle systems as tools to improve drug delivery and therapeutic efficacy. J. Biomed. Mater. Res. Part A 101(A):3646–3660 (2013)Google Scholar
  85. 85.
    http://clinicaltrials.gov/ct2/show/NCT02766699. The Johns Hopkins Hospital. A Phase 1 Study to Evaluate the Safety, Tolerability, and Immunogenicity of EGFR (Vectibix® Sequence)-Targeted EnGeneIC Dream Vectors Containing Doxorubicin (EGFR(V)-EDV-Dox) in Subjects With Recurrent Glioblastoma Multiforme (GBM) Available
  86. 86.
    http://clinicaltrials.gov/ct2/show/NCT01906385. TheUniversity of Texas Health Science Center at San Antonio. A dual Phase 1/2, Investigator initiated study to determine the maximum tolerated dose, safety, and efficacy of rhenium nanoliposomes in recurrent Glioblastoma
  87. 87.
    https://clinicaltrials.gov/ct2/show/NCT02511028, NINDS, National Institute of Neurological Disorders and Stroke. In Vivo Characterization of Inflammation With Ferumoxytol, an Ultrasmall Superparamagnetic Iron Oxide Nanoparticle, on 7 Tesla Magnetic Resonance Imaging
  88. 88.
    Sela, H., Cohen, H., Elia, P., Zach, R., Karpas, Z., Zeiri, Y.: Spontaneous penetration of gold nanoparticles through the blood brain barrier (BBB). J. Nanobiotechnol. 13, 71 (2015)CrossRefGoogle Scholar
  89. 89.
    Schleh, C., Semmler-Behnke, M., Lipka, J., Wenk, A., Hirn, S., Schaffler, M., et al.: Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology 6(1), 36–46 (2012)CrossRefGoogle Scholar
  90. 90.
    Xu, L., Dan, M., Shao, A., Cheng, X., Zhang, C., Yokel, R.A., Takemura, T., Hanagata, N., Niwa, M., Watanabe, D.: Silver nanoparticles induce tight junction disruption and astrocyte neurotoxicity in a rat blood-brain barrier primary triple coculture model. Int. J. Nanomed. 29(10), 6105–6118 (2015)Google Scholar
  91. 91.
    Benezra, M., Penate-Medina, O., Zanzonico, P.B., Schaer, D., Ow, H., Burns, A., et al.: Multimodal silica nanoparticles are effective cancer targeted probes in a model of human melanoma. J. Clin. Invest. 121(7), 2768–2780 (2011)CrossRefGoogle Scholar
  92. 92.
    Disdier, C., Devoy, J., Cosnefroy, A., Chalansonnet, M., Herlin-Boime, N., Brun, E., Lund, A., Mabondzo, A.: Tissue biodistribution of intravenously administrated titanium dioxide nanoparticles revealed blood-brain barrier clearance and brain inflammation in rat. Part Fibre Toxicol. 4(12), 27 (2015)CrossRefGoogle Scholar
  93. 93.
    Wang, Xueqin, Miaomiao, Tu, Tian, Baoming, Yi, Yanjie, Wei, ZhenZhen, Wei, Fang: Synthesis of tumor-targeted folate conjugated fluorescent magnetic albumin nanoparticles for enhanced intracellular dual-modal imaging into human brain tumor cells. Anal. Biochem. 512, 8–17 (2015)CrossRefGoogle Scholar
  94. 94.
    Datta, N.R., Krishnan, S., Speiser, D.E., Neufeld, E., Kuster, N., Bodis, S., Hofmann, H.: Magnetic nanoparticle-induced hyperthermia with appropriate payloads: Paul Ehrlich’s “magic (nano)bullet” for cancer theranostics? Cancer Treat. Rev. 50, 217–227 (2016)CrossRefGoogle Scholar
  95. 95.
    Fantechi, E., Innocenti, C., Zanardelli, M., Fittipaldi, M., Falvo, E., Carbo, M., Shullani, V., Di Cesare, M.L., Ghelardini, C., Ferretti, A.M., Ponti, A., Sangregorio, C., Ceci, P.: A smart platform for hyperthermia application in cancer treatment: cobalt-doped ferrite nanoparticles mineralized in human ferritin cages. ACS Nano 8(5), 4705–4719 (2014)CrossRefGoogle Scholar
  96. 96.
    Velasco-Aguirre, C., Morales, F., Gallardo-Toledo, E., Guerrero, S., Giralt, E., Araya, E., Kogan, M.J.: Peptides and proteins used to enhance gold nanoparticle delivery to the brain: preclinical approaches. Int. J. Nanomed. 10(10), 4919–4936 (2015)Google Scholar
  97. 97.
    Ruan, S., Hu, C., Tang, X., Cun, X., Xiao, W., Shi, K., He, Q., Gao, H.: Increased gold nanoparticle retention in brain tumors by in situ enzyme-induced aggregation. ACS Nano. 10(11), 10086–10098 (2016)Google Scholar
  98. 98.
    Cheng, K.K., Chan, P.S., Fan, S., Kwan, S.M., Yeung, K.L., Wáng, Y.X., Chow, A.H., Wu, E.X., Baum, L.: Curcumin-conjugated magnetic nanoparticles for detecting amyloid plaques in Alzheimer’s disease mice using magnetic resonance imaging (MRI). Biomaterials 44, 155–172 (2015)CrossRefGoogle Scholar
  99. 99.
    Shen, W.B., Anastasiadis, P., Nguyen, B., Yarnell, D., Yarowsky, P.J., Frenkel, V., Fishman, P.S.: Magnetic enhancement of stem cell-targeted delivery into the brain following MR-guided focused ultrasound for opening the blood-brain barrier. Cell Transplant. 26(7), 1235–1246 (2017)CrossRefGoogle Scholar
  100. 100.
    Yin, Z., Yul, T., Xu, Y.: Preparation of amyloid immuno-nanoparticles as potential MRI contrast agents for Alzheimer’s disease diagnosis. J. Nanosci. Nanotechnol. 15(9), 6429–6434 (2015)CrossRefGoogle Scholar
  101. 101.
    Fan, C.H., Ting, C.Y., Lin, H.J., Wang, C.H., Liu, H.L., Yen, T.C., Yeh, C.K.: SPIO-conjugated, doxorubicin-loaded microbubbles for concurrent MRI and focused-ultrasound enhanced brain-tumor drug delivery. Biomaterials 34(14), 3706–3715 (2013)CrossRefGoogle Scholar
  102. 102.
    Fan, C.-H., Cheng, Y.-H., Ting, C.-Y., et al.: Ultrasound/Magnetic targeting with SPIO-DOX-Microbubble complex for image-guided drug delivery in brain tumors. Theranostics. 6(10), 1542–1556 (2016).  https://doi.org/10.7150/thno.15297CrossRefGoogle Scholar
  103. 103.
    Sintov, A.C., Velasco-Aguirre, C., Gallardo-Toledo, E., Araya, E., Kogan, M.J.: Metal nanoparticles as targeted carriers circumventing the blood-brain barrier. Int. Rev. Neurobiol. 130, 199–227 (2016)CrossRefGoogle Scholar
  104. 104.
    Qin, Y., Chen, H., Zhang, Q., et al.: Liposome formulated with TAT-modified cholesterol for improving brain delivery and therapeutic efficacy on brain glioma in animals. Int. J. Pharm. 420(2), 304–312 (2011)CrossRefGoogle Scholar
  105. 105.
    Wei, L., Guo, X.Y., Yang, T., Yu, M.Z., Chen, D.W., Wang, J.C.: Brain tumor-targeted therapy by systemic delivery of siRNA with transferrin receptor-mediated core-shell nanoparticles. Int. J. Pharm. 510(1), 394–405 (2016)CrossRefGoogle Scholar
  106. 106.
    Kaur, I.P., Bhandari, R., Bhandari, S., Kakkar, V.: Potential of solid lipid nanoparticles in brain targeting. J. Control. Release 127(2), 97–109 (2008)CrossRefGoogle Scholar
  107. 107.
    Muntimadugu, E., Dhommati, R., Jain, A., Challa, V.G.S., Shaheen, M., Khan, W.: Intranasal delivery of nanoparticle encapsulated tarenflurbil: a potential brain targeting strategy for Alzheimer’s disease. Eur. J. Pharm. Sci. 92, 224–234 (2016)CrossRefGoogle Scholar
  108. 108.
    Kuo, Y.-C., Cheng, S.-J.: Brain targeted delivery of carmustine using solid lipid nanoparticles modified with tamoxifen and lactoferrin for antitumor proliferation. Int. J. Pharm. 499(1–2), 10–19 (2016)CrossRefGoogle Scholar
  109. 109.
    Ahmad, N., Ahmad, R., Naqvi, A.A., Alam, M.A., Ashafaq, M., Samim, M., Iqbal, Z., Ahmad, F.J.: Rutin-encapsulated chitosan nanoparticles targeted to the brain in the treatment of Cerebral Ischemia. Int. J. Biol. Macromol. 91, 640–655 (2016)Google Scholar
  110. 110.
    Kim, J.Y., Choi, W.I., Kim, Y.H., Tae, G.: Brain-targeted delivery of protein using chitosan- and RVG peptide-conjugated, pluronic based nano-carrier. Biomaterials 34(4), 1170–1178 (2013)CrossRefGoogle Scholar
  111. 111.
    Yurui, Xu, Asghar, Sajid, Yang, Liu, Li, Hongying, Wang, Zhilin, Ping, Qineng, Xiao, Yanyu: Lactoferrin-coated polysaccharide nanoparticles based on chitosan hydrochloride/hyaluronic acid/PEG for treating brain glioma. Carbohydr. Polym. 157, 419–428 (2017)CrossRefGoogle Scholar
  112. 112.
    Jose, S., Juna, B.C., Cinu, T.A., Jyoti, H., Aleykutty, N.A.: Carboplatin loaded Surface modified PLGA nanoparticles: Optimization, characterization, and in vivo brain targeting studies. Colloids Surf. B Biointerfaces 142, 307–314 (2016)CrossRefGoogle Scholar
  113. 113.
    Sun, D., Li, N., Zhang, W., Zhao, Z., Mou, Z., Huang, D., Liu, J., Wang, W.: Design of PLGA-functionalized quercetin nanoparticles for potential use in Alzheimer’s disease. Colloids Surf. B Biointerfaces 1(148), 116–129 (2016)CrossRefGoogle Scholar
  114. 114.
    Choonara, Y.E., Pillay, V., Ndesendo, V.M., du Toit, L.C., Kumar, P., Khan, R.A., et al.: Polymeric emulsion and crosslink-mediated synthesis of super-stable nanoparticles as sustained-release anti-tuberculosis drug carriers. Colloids Surf. B Biointerfaces 87(2), 243–254 (2011)CrossRefGoogle Scholar
  115. 115.
    Tosi, G., Vilella, A., Veratti, P., Belletti, D., Pederzoli, F., Ruozi, B., Vandelli, M.A., Zoli, M., Forni, F.: Exploiting bacterial pathways for BBB crossing with PLGA nanoparticles modified with a mutated form of diphtheria toxin (CRM197): in vivo experiments. Mol. Pharm. 12(10), 3672–3684 (2015)CrossRefGoogle Scholar
  116. 116.
    Jain, D.S., Bajaj, A.N., Athawale, R.B., Shikhande, S.S., Pandey, A., Goel, P.N., Gude, R.P., Patil, S., Raut, P.: Thermosensitive PLA based nanodispersion for targeting brain tumor via intranasal route. Mater. Sci. Eng. C Mater. Biol. Appl. 63, 411–421 (2016)CrossRefGoogle Scholar
  117. 117.
    Åslund, A.K., Berg, S., Hak, S., Mørch, Ý., Torp, S.H., Sandvig, A., Widerøe, M., Hansen, R., de Lange Davies, C.: Nanoparticle delivery to the brain—by focused ultrasound and self-assembled nanoparticle-stabilized microbubbles. J. Control. Release 220(Pt A), 287–294 (2015)Google Scholar
  118. 118.
    Frosina, G.: Nanoparticle-mediated drug delivery to high-grade gliomas. Nanomedicine 12(4), 1083–1093 (2016)CrossRefGoogle Scholar
  119. 119.
    Zhang, L., Zhao, D.: Applications of nanoparticles for brain cancer imaging and therapy. J. Biomed. Nanotechnol. 10(9), 1713–1731 (2014)CrossRefGoogle Scholar
  120. 120.
    http://www.pdf.org/en/parkinson_statistics Understanding Parkinson’s, Park. Dis. Found. (Accessed 14 June 2015)

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Czech Academy of SciencesPragueCzech Republic

Personalised recommendations