Terraced Agroforestry Systems in West Anti-Atlas (Morocco): Incidence of Climate Change and Prospects for Sustainable Development

  • Mohamed Ziyadi
  • Abdallah Dahbi
  • Abderahmane Aitlhaj
  • Abdeltif El Ouahrani
  • Abdelhadi El Ouahidi
  • Hafid AchtakEmail author
Part of the Climate Change Management book series (CCM)


The Moroccan Anti-Atlas region contains all the “ingredients” of a hostile environment including an arid climate, a highly rugged topography, a low vegetation cover due to insufficient rainfall, and inexorable soil erosion. These harsh conditions incited local peasants to adopt simple but ingenious agricultural practices that fit the prevailing rigours and ensure their livelihood survival: Terraced Agroforestry System (TAS). TAS, one of the most ancestral agricultural practices, becomes a dominant feature of the Anti-Atlas landscape. This study aims to explore the Anti-Atlas TAS as a resilient approach to counter climate change impacts and ensure a sustainable development of this region. To this end, a prospective study was conducted to survey the indigenous peasants, to assess the status of TAS, to describe its biodiversity trends, and ultimately to ensure its sustainable development. The primary results revealed that the Anti-Atlas TAS are based essentially on the Argan tree (Argania spinosa L.) as the predominant vegetation crown layer. Accordingly, goats represented the main integrated livestock. The related annual crops are mainly represented by local varieties of cereals and legumes. Other dryland fruit trees, such as almond, fig, olive, and date palm are also sparsely planted. Beyond their purely aesthetic and economic role, this agro-cultural heritage contributes greatly to the conservation of several local varieties and their associated fauna. Furthermore, the results allows us to identify some serious climatic and social challenges faced by the persisting TAS in the Anti-Atlas region. In this regards, the regional climate change scenarios predict warmer and dryer conditions over the studied region, meanwhile the new generation of local peasants increasingly lacks interest to maintain TAS and prefers to seek new opportunities in the Souss-Massa plain valley. Consequently, this paper investigates major issues threatened social, economic, and ecological balances and provides a combination of adaptation solutions to help revive the agro-cultural heritage of TAS from the process of extinction.


Terraced agroforestry systems Anti-Atlas Morocco Sustainable development Climate change 



Authors present their gratitude to Dr. Ahmed AMRI for the proof reading of this publication.


  1. Achtak H, Ater M, Oukabli A, Santoni S et al (2010) Traditional agroecosystems as conservatories and incubators of cultivated plant varietal diversity: the case of fig (Ficus carica L.) in Morocco. BMC Plant Biol 18:10–28Google Scholar
  2. ADA (2009) Green Morocco plan. Moroccan Agricultural Development AgencyGoogle Scholar
  3. Alahiane N, Elmouden A, Aitlhaj A et al (2016) Small dam reservoir siltation in the Atlas Mountains of Central Morocco: analysis of factors impacting sediment yield. Environ Earth Sci 75:1035CrossRefGoogle Scholar
  4. Aziz F, Farissi M, Khalifa J, Ouazzani N et al (2014) Les réservoirs de stockage d’eau traditionnel: caractéristiques, popularité et problèmes. Int J Innov Sci Res 11(1):83–95Google Scholar
  5. Brown ME, Funk CC (2008) Food security under climate change. Science 319:580–581CrossRefGoogle Scholar
  6. Brush SB (1995) In situ conservation of landraces in centers of crop diversity. Crop Sci 35:346–354CrossRefGoogle Scholar
  7. Charrouf Z, Guillaume D (2008) Argan oil, functionnal food, and the sustainable development of the Argan forest. Nat Prod Commun 3:283–288Google Scholar
  8. Charrouf Z, Guillaume D (2009) Sustainable development in northern Africa: the argan forest case. Sustainability 1:1012–1022. Scholar
  9. Chbouki N, Stockton CW, Myers DE (1995) Spatio-temporal patterns of drought in Morocco. Int J Climatol 15:187–205CrossRefGoogle Scholar
  10. Choubert G (1963) Histoire géologique du Précambrien de l’Anti-Atlas. Tome 1, Notes et Mémoires du Service géologique du Maroc, 162, 352p, 33 fig., 81 photos, 5 cartes, 7 cartes géol. CouleursGoogle Scholar
  11. Choubert G, Faure-Muret A (1972) Carte géologique du Massif du Kerdous (Aït Baha, Tanalt, Anzi, Tafraout) [Document cartographique 1/200000]. Service géologique du Maroc, RabatGoogle Scholar
  12. Cromack K Jr, Fichter BL, Moldenke AM, Entry JA et al (1988) Interactions between soil animals and ectomycorrhizal fungal mats. Agr Ecosyst Environ 24:161–168CrossRefGoogle Scholar
  13. David BL, Marshall BB, Claudia T, Michael DM et al (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319(5863):607–610. Scholar
  14. Despois J (1956) La culture en terrasses en l’Afrique du Nord. Annales Économies Sociétés Civilisations, pp 42–50Google Scholar
  15. El Aboudi A (1990) Typologie des arganeraies inframéditerranéennes et écophysiologie de l’arganier (Argania spinosa (L.) Skeels) dans le Sous (Maroc). Thèse de doctorat, Université de Grenoble IGoogle Scholar
  16. El Bilali H, Berjan S, Driouch N, Ahouate L et al (2012) Agriculture and rural development gouvernance in Morocco. In: Conference proceeding: third international scientific symposium “Agrosym 2012”, At Jahorina (East Sarajevo), Bosnia, Herzegovina,
  17. El Fasskaoui B (2009) Fonctions, défis et enjeux de la gestion et du développement durables dans la Réserve de Biosphère de l’Arganeraie (Maroc). Études caribéennes, vol 12.
  18. Esper J, Frank DC, Büntgen U, Verstege A et al (2007) Long-term drought severity variations in Morocco. Geophys Res Lett 34.
  19. Esper J, Frank DC, Büntgen U, Verstege A et al (2009) Morocco millennial palmer drought severity index reconstruction. IGBP PAGES/World Data Center for paleoclimatology data contribution series #2009-032. NOAA/NCDC Paleoclimatology Program, Boulder CO, USAGoogle Scholar
  20. Esquinas-Alcazar J (2005) Protecting crop genetic diversity for food security: political, ethical and technical challenges. Nat Rev Genet 6:946–953CrossRefGoogle Scholar
  21. Gebauer J, Luedeling E, Hammer K, Nagieb M et al (2007) Mountain oases in northern Oman: An environment for evolution and in situ conservation of plant genetic resources. Genet Resour Crop Evol 54:465–481CrossRefGoogle Scholar
  22. Gunn J (2004) Encyclopedia of caves and karst science. Taylor & Francis, p 902. ISBN1579583997, 9781579583996Google Scholar
  23. Harfouche R (2003) Histoire des paysages méditerranéens au cours de protohistoire et de l’antiquité: aménagements et agriculture. Thèse de Doctorat, Aix-en-ProvenceGoogle Scholar
  24. Hmimsa Y, Ater M (2008) Agrodiversity in the traditional agrosystems of the Rif Mountains (North of Morocco). Biodiversity 9:78–81CrossRefGoogle Scholar
  25. IPCC (2007) Climate change 2007: synthesis report. In: Core Writing Team, Pachauri RK, Reisinger A (eds) Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland, p 104Google Scholar
  26. IPCC (2014) In: Climate change 2014: synthesis report. Core Writing Team, Pachauri RK, Meyer LA (eds) Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland, p 151Google Scholar
  27. Kenny L, De Zborowski I (2007) In Atlas de l’arganier et de l’arganeraie. IAV Hassan II, Rabat, Morocco, p 190Google Scholar
  28. Kottek M, Grieser J, Beck C, Rudolf B et al (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15:259–263. Scholar
  29. Lacombe S, Bradley RL, Hamel C, Beaulieu C (2009) Do tree-based intercropping systems increase the diversity and stability of soil microbial communities? Agr Ecosyst Environ 131(1–2):25–31. Scholar
  30. Le Polain de Waroux Y, Lambini EF (2012) Monitoring degradation in arid and semi-arid forests and woodlands: the case of the argan woodlands (Morocco). Appl Geogr 32:777–786CrossRefGoogle Scholar
  31. Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD et al (2008) Prioritizing Climate Change Adaptation Needs for Food Security in 2030. Science 319(5863):607–610. Scholar
  32. Lybbert TJ, Aboudrare A, Chaloud D, Magnan N, Nash M (2011) Booming markets for Moroccan argan oil appear to benefit some rural households while threatening the endemic argan forest. Proc Nat Acad Sci 108(34):13963–13968. Scholar
  33. M’Hirit O, Benzyane M, Benchekroun F, El Yousfi SM et al (1998) L’Arganier. Une espèce fruitière-forestière à usages multiples. Mardaga, Sprimont, Belgium p 150Google Scholar
  34. Mooney H, Cropper A, Reid W (2005) Confronting the human dilemma: how can ecosystems provide sustainable services to benefit society? Nature 434:561–562CrossRefGoogle Scholar
  35. Morton JF, Voss GL (1987) The Argan tree (Argania sideroxylon, Sapotaceae), a desert source of edible oil. Econ Bot 41:221–233CrossRefGoogle Scholar
  36. Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GAB et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefGoogle Scholar
  37. Natsagdorj O (2012) Assessment of drought hazard: a case study in Sehoul Area, Morocco. Thesis submitted to the Faculty of Geo-information Science and Earth Observation of the University of Twente. Enschede, The Netherlands. Retrieved from, 30 Mar 2017
  38. Noorka IR, Heslop-Harrison JS (2014) Agriculture and climate change in Southeast Asia and the Middle East: breeding, climate change adaptation, agronomy, and water security. In: Leal Filho W (ed) Handbook of climate change adaptation. Springer, Berlin, Heidelberg, pp 1–8. Scholar
  39. Olivier A, Paquette A, Cogliastro A, Rousseau AN et al (2015) Contribution de systèmes agroforestiers intercalaires à l’adaptation aux changements climatiques des agroécosystèmes. In: XIVe Congres Forestier Mondial, Durban, Afrique du SudGoogle Scholar
  40. Palmer WC (1965) Meteorological drought. Research paper no. 45, U.S. Department of Commerce Weather Bureau, p 58. Available online by the NOAA National Climatic Data Center at
  41. Peltier JP (1982) La végétation du bassin versant de l’Oued Sous (Maroc), thèse de doctorat ès sciences, université de Grenoble I, p 208Google Scholar
  42. Podeur J (1995) Textes berbères des Aït Souab (Anti-Atlas, Maroc), Institut de recherches et d’études sur le monde arabe et musulman, Aix-en-Provence, p 159Google Scholar
  43. RMS (2011) Doing business in Morocco. RSM International Publication, England, United KingdomGoogle Scholar
  44. Rivest D, Lorente M, Olivier A, Messier C (2013) Soil biochemical properties and microbial resilience in agroforestry systems: effects on wheat growth under controlled drought and flooding conditions. Sci Total Environ 463–464:51–60CrossRefGoogle Scholar
  45. Ruas MP, Ettahiri AS, Fili A, Van Staëvel JP et al (2015) Recherches archéobotaniques sur l’arganeraie médiévale dans la montagne d’Îgîlîz (Anti-Atlas, Maroc). In: Proceedings congrés international de l’arganier. Agadir. Morocco, 17–19 Dec 2015Google Scholar
  46. Wilhite DA, Glantz MH (1985) Understanding the drought phenomenon: the role of definitions. Water Int 10(3):111–120CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mohamed Ziyadi
    • 1
  • Abdallah Dahbi
    • 2
  • Abderahmane Aitlhaj
    • 3
  • Abdeltif El Ouahrani
    • 4
  • Abdelhadi El Ouahidi
    • 1
  • Hafid Achtak
    • 2
    Email author
  1. 1.Department of Geography, Polydisciplinary Faculty of SafiCadi Ayyad UniversitySafiMorocco
  2. 2.Department of Biology, Polydisciplinary Faculty of SafiCadi Ayyad UniversitySafiMorocco
  3. 3.National Agency for Development of Oasis and Argane Areas (ANDZOA)AgadirMorocco
  4. 4.Department of Biology, Faculty of Sciences-TetouanAbdelamlek Essaadi UniversityTétouanMorocco

Personalised recommendations