Standing-Wave and Resonant Soft- and Hard-X-ray Photoelectron Spectroscopy of Oxide Interfaces

Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 266)


We discuss several new directions in photoemission that permit more quantitatively studying buried interfaces: going to higher energies in the multi-keV regime; using standing-wave excitation, created by reflection from either a multilayer heterostructure or atomic planes; tuning the photon energy to specific points near absorption resonances; and making use of near-total-reflection geometries. Applications to a variety of oxide and spintronic systems are discussed.


Buried Interface SW Excitation Angle-resolved Photoemission (ARPES) Magnetic Tunnel Junctions Bulk Electronic Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The specific sources of funding for the various studies presented here are listed in the publications cited. Beyond this, C.S.F. has also been supported during the writing of this chapter for salary by the Director, Office of Science, Office of Basic Energy Sciences (BSE), Materials Sciences and Engineering (MSE) Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, through the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory, and through a DOE BES MSE grant at the University of California Davis from the X-ray Scattering Program under Contract DE-SC0014697. A.X.G acknowledges support during the writing of this chapter from the U.S. Army Research Office, under Grant No. W911NF-15-1-0181.


  1. 1.
    C.S. Fadley, Synchrotron Radiat. News 25, 26 (2012)CrossRefGoogle Scholar
  2. 2.
    Hard X-ray Photoelectron Spectroscopy (HAXPES), ed. by J.C. Woicik. Springer Springer Series in Surface Sciences, vol. 59 (2016)Google Scholar
  3. 3.
    The X-ray Standing Wave Technique-Principles and Applications, ed. by J. Zegenhagen, A. Kazimirov (World Scientific Publishing, 2013)Google Scholar
  4. 4.
    C.S. Fadley, J. Electron Spectrosc. 178–179, 2–32 (2010)CrossRefGoogle Scholar
  5. 5.
    C.S. Fadley, J. Electron Spectrosc. 190, 165–179 (2013), Special issue dedicated to hard X-ray photoemission, ed. by W. DrubeGoogle Scholar
  6. 6.
    A.X. Gray, J. Electron Spectrosc. 195, 399 (2014)CrossRefGoogle Scholar
  7. 7.
    C.S. Fadley, S. Nemšák, in special issue of the Journal of Electron Spectroscopy dedicated to Structure Determination and Wave-Function Analysis, ed. by H. Daimon, A. Hishikawa, C. Miron, J. Electron Spectrosc. 195, 409–422 (2014)Google Scholar
  8. 8.
    S.-H. Yang, A.X. Gray, A.M. Kaiser, B.S. Mun, J.B. Kortright, C.S. Fadley, J. Appl. Phys. 113, 073513 (2013)CrossRefGoogle Scholar
  9. 9.
    S.-H. Yang, B.S. Mun, N. Mannella, S.-K. Kim, J.B. Kortright, J. Underwood, F. Salmassi, E. Arenholz, A. Young, Z. Hussain, M.A. Van Hove, C.S. Fadley. J. Phys. Cond. Matt. 14, L406 (2002)Google Scholar
  10. 10.
    A.X. Gray, C. Papp, B. Balke, S.-H. Yang, M. Huijben, E. Rotenberg, A. Bostwick, S. Ueda, Y. Yamashita, K. Kobayashi, E.M. Gullikson, J.B. Kortright, F.M.F. de Groot, G. Rijnders, D.H.A. Blank, R. Ramesh, C.S. Fadley, Phys. Rev. B 82, 205116 (2010)CrossRefGoogle Scholar
  11. 11.
    S. Nemšák, G. Pálsson, A.X. Gray, D. Eiteneer, A.M. Kaiser, G. Conti, A.Y. Saw, A. Perona, A. Rattanachata, C. Conlon, A. Bostwick, V. Strocov, M. Kobayashi, W. Stolte, A. Gloskovskii, W. Drube, M.-C. Asencio, J. Avila, J. Son, P. Moetakef, C. Jackson, A. Janotti, C.G. Van de Walle, J. Minar, J. Braun, H. Ebert, J.B. Kortright, S. Stemmer, C.S. Fadley, Phys. Rev. B 93, 245103 (2016)CrossRefGoogle Scholar
  12. 12.
    M.J. Bedzyk, G. Materlik, M.V. Kovalchukas, Phys. Rev. B 30, 2453 (1984)CrossRefGoogle Scholar
  13. 13.
    B.L. Henke, Phys. Rev. 6, 94 (1972)CrossRefGoogle Scholar
  14. 14.
    M. Mehta, C.S. Fadley, Chem. Phys. Lett. 46, 225 (1977)CrossRefGoogle Scholar
  15. 15.
    M.J. Chester, T. Jach, S. Thurgate, J. Vac. Sci. Technol. B 11, 1609 (1993); M.J. Chester, T. Jach, Phys. Rev. B 48, 17262 (1993)Google Scholar
  16. 16.
    J. Kawai, S. Hayakawa, Y. Kitajima, Y. Gohshi, Adv. X-ray Chem. Anal. Jpn. 26s 97 (1995)Google Scholar
  17. 17.
    J. Kawai, Rev. J. Electron Spectrosc. 178–179, 268–272 (2010)Google Scholar
  18. 18.
    M. Marinova, J.E. Rault, A. Gloter, S. Nemšák, G.K. Pálsson, J.-P. Rueff, C.S. Fadley, C. Carrétéro, H. Yamadag, K. March, V. Garcia, S. Fusil, A. Barthélémy, O. Stéphan, C. Colliex, M. Bibes, Nano Lett. 15, 2533–2541 (2015)CrossRefGoogle Scholar
  19. 19.
    C. Papp, L. Plucinski, J. Minar, J. Braun, H. Ebert, C.S. Fadley, Phys. Rev. B 84, 045433 (2011)CrossRefGoogle Scholar
  20. 20.
    M. Sagurton, E.L. Bullock, C.S. Fadley, Surf. Sci. 182, 287 (1987)CrossRefGoogle Scholar
  21. 21.
    J. Braun, J. Minar, S. Mankovsky, L. Plucinski, V.N. Strocov, N.B. Brookes, C.M. Schneider, C.S. Fadley, H. Ebert, Phys. Rev. B 88, 205409 (2013)CrossRefGoogle Scholar
  22. 22.
    A.X. Gray, C. Papp, S. Ueda, B. Balke, Y. Yamashita, L. Plucinski, J. Minár, J. Braun, E.R. Ylvisaker, C.M. Schneider, W.E. Pickett, H. Ebert, K. Kobayashi, C.S. Fadley, Nat. Mat. 10, 759 (2011)CrossRefGoogle Scholar
  23. 23.
    M.J. Bedzyk, D. Bilderback, J. White, H.D. Abrufia, M.G. Bommarito, J. Phys. Chem. 90, 4926 (1986)CrossRefGoogle Scholar
  24. 24.
    J.B. Kortright, A. Fischer-Colbrie, J. Appl. Phys. 61, 1130 (1987)CrossRefGoogle Scholar
  25. 25.
    S.-K. Kim, J.B. Kortright, Phys. Rev. Lett. 86, 1347 (2001)CrossRefGoogle Scholar
  26. 26.
    S.-H. Yang, B.S. Mun, A.W. Kay, S.-K. Kim, J.B. Kortright, J.H. Underwood, Z. Hussain, C.S. Fadley, Surf. Sci. Lett. 461, L557 (2000)CrossRefGoogle Scholar
  27. 27.
    S.-H. Yang, B.S. Mun, N. Mannella, A. Nambu, B.C. Sell, S.B. Ritchey, F. Salmassi, S.S.P. Parkin, C.S. Fadley, J. Phys. C Solid State 18, L259–L267 (2006)Google Scholar
  28. 28.
    A.X. Gray, F. Kronast, C. Papp, S.-H. Yang, S. Cramm, I.P. Krug, F. Salmassi, E.M. Gullikson, D.L. Hilken, E.H. Anderson, P.J. Fischer, H.A. Dürr, C.M. Schneider, C.S. Fadley, Appl. Phys. Lett. 97, 062503 (2010)CrossRefGoogle Scholar
  29. 29.
    S.-H. Yang, B. Balke, C. Papp, S. Döring, U. Berges, L. Plucinski, C. Westphal, C.M. Schneider, S.S.P. Parkin, C.S. Fadley, Phys. Rev. B 84, 184410 (2011)CrossRefGoogle Scholar
  30. 30.
    A.A. Greer, A.X. Gray, S. Kanai, A.M. Kaiser, S. Ueda, Y. Yamashita, C. Bordel, G. Palsson, N. Maejima, S.-H. Yang, G. Conti, K. Kobayashi, S. Ikeda, F. Matsukura, H. Ohno, C.M. Schneider, J.B. Kortright, F. Hellman, C.S. Fadley, Appl. Phys. Lett. 101, 202402 (2012)CrossRefGoogle Scholar
  31. 31.
    B.W. Batterman, Phys. Rev. 133, A759 (1964)CrossRefGoogle Scholar
  32. 32.
    P.I. Cowan, J.A. Golovchenko, M.F. Robbins, Phys. Rev. Lett. 44, 1680 (1980)CrossRefGoogle Scholar
  33. 33.
    W. Drube, A. Lessmann, G. Materlik, Rev. Sci. Instrum. 63, 1138 (1992)CrossRefGoogle Scholar
  34. 34.
    J.C. Woicik, E.J. Nelson, P. Pianetta, Phys. Rev. Lett. 84, 773 (2000)CrossRefGoogle Scholar
  35. 35.
    J.C. Woicik, E.J. Nelson, D. Heskett, J. Warner, L.E. Berman, B.A. Karlin, I.A. Vartanyants, M.Z. Hasan, T. Kendelewicz, Z.X. Shen, P. Pianetta, Phys. Rev. B 64, 125115 (2001)CrossRefGoogle Scholar
  36. 36.
    A.X. Gray, J. Minár, L. Plucinski, M. Huijben, A. Bostwick, E. Rotenberg, S.-H. Yang, J. Braun, A. Winkelmann, D. Eiteneer, A. Rattanachata, A. Greer, G. Rijnders, D.H.A. Blank, D. Doennig, R. Pentcheva, J.B. Kortright, C.M. Schneider, H. Ebert, C.S. Fadley, Europhys. Lett. 104, 17004 (2013)CrossRefGoogle Scholar
  37. 37.
    P. Moetakef, J.Y. Zhang, A. Kozhanov, B. Jalan, R. Seshadri, S.J. Allen, S. Stemmer, Appl. Phys. Lett. 98, 112110 (2011); P. Moetakef, T.A. Cain, D.G. Ouellette, J.Y. Zhang, D. O. Klenov, A. Janotti, C.G. Van de Walle, S. Rajan, S.J. Allen, S. Stemmer, Appl. Phys. Lett. 99, 232116 (2011); C. Jackson, P. Moetakef, S.J. Allen, S. Stemmer, Appl. Phys. Lett. 100, 232106 (2012); P. Moetakef, J.R. Williams, D. G. Ouellette, A. P. Kajdos, D. Goldhaber-Gordon, S.J. Allen, S. Stemmer, Phys. Rev. X 2, 021014 (2012)Google Scholar
  38. 38.
    W. Meevasana, P.D.C. King, R.H. He, S.-K. Mo, M. Hashimoto, A. Tamai, P. Songsiriritthigul, F. Baumberger, Z.-X. Shen, Nat. Mat. 10, 114 (2011)Google Scholar
  39. 39.
    A.F. Santander-Syro, O. Copie, T. Kondo, F. Fortuna, S. Pailhès, R. Weht, X.G. Qiu, F. Bertran, A. Nicolaou, A. Taleb-Ibrahimi, P. Le Fèvre, G. Herranz, M. Bibes, N. Reyren, Y. Apertet, P. Lecoeur, A. Barthélémy, M.J. Rozenberg, Nature 469(7329), 189 (2011)CrossRefGoogle Scholar
  40. 40.
    S. Nemšák, A. Shavorskiy, O. Karslioglu, I. Zegkinoglou, A. Rattanachata, C.S. Conlon, A. Keqi, P.K. Greene, K. Liu, F. Salmassi, E.M. Gullikson, H. Bluhm, C.S. Fadley, Nat. Comm. 5, 5441 (2014)CrossRefGoogle Scholar
  41. 41.
    H. Ohno, Electrochemical Aspects of Ionic Liquids (Wiley, 2011)Google Scholar
  42. 42.
    G.E. Brown, G. Calas, Mineral-aqueous solution interfaces and their impact on the environment. Geochem. Persp. 1, 483–742, with special discussion of the mineral-electrolyte double layer over pp. 552–557Google Scholar
  43. 43.
    W. Smekal, W.S.M. Werner, C.J. Powell, Surf. Interface Anal. 3, 1059 (2005); W.S.M. Werner, W. Smekal, T. Hisch, J. Himmelsbach, C.J. Powell, J. Electron Spectrosc. 190, 137 (2013)Google Scholar
  44. 44.
    O. Karslıoğlu, S. Nemšák, I. Zegkinoglou, A. Shavorskiy, M. Hartl, F. Salmassi, E.M. Gullikson, M.L. Ng, Ch. Rameshan, B. Rude, D. Bianculli, A.A. Cordones-Hahn, S. Axnanda, E.J. Crumlin, P.N. Ross, C.M. Schneider, Z. Hussain, Z. Liu, C.S. Fadley, H. Bluhm, Faraday Soc. Disc. 180, 35 (2015)CrossRefGoogle Scholar
  45. 45.
    S. Axnanda, E.J. Crumlin, B. Mao, S. Rani, R. Chang, P.G. Karlsson, M.O.M. Edwards, M. Lundqvist, R. Moberg, P.N. Ross, Z. Hussain, Z. Liu, Sci. Rep. 5, 09788 (2015)CrossRefGoogle Scholar
  46. 46.
    H. Yamada, M. Marinova, P. Altuntas, A. Crassous, L. Bégon-Lours, S. Fusil, E. Jacquet, V. Garcia, K. Bouzehouane, A. Gloter, J.E. Villegas, A. Barthélémy, M. Bibes, Sci. Rep. 3, 2834 (2013)CrossRefGoogle Scholar
  47. 47.
    M.J. Bedzyk, in Surface X-ray and neutron scattering, in Springer Proceedings in Physics, ed. by H. Zabel, I.K. Robinson I, vol. 61, 51, pp. 113–117 (Springer, 1992) (and references therein)Google Scholar
  48. 48.
    A.X. Gray, J. Minar, S. Ueda, P.R. Stone, Y. Yamashita, J. Fujii, J. Braun, L. Plucinski, C.M. Schneider, G. Panaccione, H. Ebert, O.D. Dubon, K. Kobayashi, C.S. Fadley, Nat. Mat. 11, 957 (2012)CrossRefGoogle Scholar
  49. 49.
    M. Kobayashi, I. Muneta, Y. Takeda, Y. Harada, A. Fujimori, J. Krempasky, T. Schmitt, S. Ohya, M. Tanaka, M. Oshima, V.N. Strocov, Phys. Rev. B 89, 205204 (2014)CrossRefGoogle Scholar
  50. 50.
    S. Thiess, T.-L. Lee, F. Bottin, J. Zegenhagen, Solid State Commun. 150, 553 (2010)Google Scholar
  51. 51.
    S. Nemšák, M. Gehlmann, C.T. Kuo, S.C. Lin, C. Schlueter, E. Mlynczak, T.L. Lee, L. Plucinski, H. Ebert, I. Di Marco, J. Minár, C.M. Schneider, C.S. Fadley, Unpublished resultsGoogle Scholar
  52. 52.
    U. Gelius, K. Siegbahn, Discuss. Faraday Soc. 54, 257 (1972)CrossRefGoogle Scholar
  53. 53.
    C.S. Fadley, in Electron Spectroscopy: Theory, Techniques, and Applications, ed. by C.R. Brundle, A.D. Baker, vol. II, Chap. 1 (Academic Press, London, 1978), pp. 56–57Google Scholar
  54. 54.
    C. Solterbeck, W. Schattke, J.-W. Zahlmann-Nowitzki, K.-U. Gawlik, L. Kipp, M. Skibowski, C.S. Fadley, M.A. Van Hove, Phys. Rev. Lett. 79, 4681 (1997)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Peter-Grünberg-Institut PGI-6, Forschungszentrum Jülich GmbHJülichGermany
  2. 2.Department of PhysicsTemple UniversityPhiladelphiaUSA
  3. 3.Department of PhysicsUniversity of California DavisDavisUSA
  4. 4.Lawrence Berkeley National Laboratory, Materials Sciences DivisionBerkeleyUSA

Personalised recommendations