Photoelectron Spectroscopy of Transition-Metal Oxide Interfaces

Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 266)

Abstract

Transition metal oxides exhibit a plethora of intrinsic functionalities like superconductivity, magnetism or multiferroicity. To put these to practical use requires the integration of suited oxide materials within thin film structures where the active regions with switchable and tunable physical properties often are the very interfaces. Fundamental knowledge on the chemical and electronic interface structure is key to design target properties for working devices. Here we will show that photoelectron spectroscopy is a powerful tool to obtain such kind of information if high enough photon energies in the soft and hard X-ray regime are employed to enhance the probing depth and hence get access to the electronic structure of buried layers and interfaces.

Notes

Acknowledgements

We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (FOR 1162, FOR 1346, SFB 1170) and the German Federal Ministry of Education and Research. The synchrotron experiments were conducted at BESSY II (Helmholtz-Zentrum Berlin, Germany), PETRA III (Deutsches Elektronen-Synchrotron, Hamburg, Germany), Swiss Light Source (Paul Scherrer Institut, Villigen, Switzerland) and Diamond Light Source (Harwell Science and Innovation Campus, Didcot, United Kingdom).

References

  1. 1.
    S. Suga, A. Sekiyama, Photoelectron Spectroscopy - Bulk and Surface Electronic Structures. Springer Series in Optical Sciences, vol. 176 (Springer, Berlin, 2014)Google Scholar
  2. 2.
    S. Hüfner, Photoemission Spectroscopy (Springer, Berlin, 1995)Google Scholar
  3. 3.
    M. Sing, G. Berner, K. Goß, A. Müller, A. Ruff, A. Wetscherek, S. Thiel, J. Mannhart, S.A. Pauli, C.W. Schneider, P.R. Willmott, M. Gorgoi, F. Schäfers, R. Claessen, Phys. Rev. Lett. 102, 176805 (2009)CrossRefGoogle Scholar
  4. 4.
    S. Thiel, G. Hammerl, A. Schmehl, C.W. Schneider, J. Mannhart, Science 313, 1942 (2006)CrossRefGoogle Scholar
  5. 5.
    G. Berner, A. Müller, F. Pfaff, J. Walde, C. Richter, J. Mannhart, S. Thiess, A. Gloskovskii, W. Drube, M. Sing, R. Claessen, Phys. Rev. B 88, 115111 (2013)CrossRefGoogle Scholar
  6. 6.
    S.A. Chambers, L. Qiao, T.C. Droubay, T.C. Kaspar, B.W. Arey, P.V. Sushko, Phys. Rev. Lett. 107, 206802 (2011)CrossRefGoogle Scholar
  7. 7.
    E.A. Kraut, R.W. Granta, J.R. Waldrop, S.P. Kowalczyk, Phys. Rev. Lett. 44, 1620 (1980)CrossRefGoogle Scholar
  8. 8.
    Y. Segal, J.H. Ngai, J.W. Reiner, F.J. Walker, C.H. Ahn, Phys. Rev. B 80, 241107 (2009)CrossRefGoogle Scholar
  9. 9.
    S. Chambers, M. Engelhard, V. Shutthanandan, Z. Zhu, T. Droubay, L. Qiao, P. Sushko, T. Feng, H. Lee, T. Gustafsson, E. Garfunkel, A. Shah, J.M. Zuo, Q. Ramasse, Surf. Sci. Rep. 65, 317 (2010)CrossRefGoogle Scholar
  10. 10.
    L. Qiao, T.C. Droubay, T. Varga, M.E. Bowden, V. Shutthanandan, Z. Zhu, T.C. Kaspar, S.A. Chambers, Phys. Rev. B 83, 085408 (2011)CrossRefGoogle Scholar
  11. 11.
    G. Drera, G. Salvinelli, A. Brinkman, M. Huijben, G. Koster, H. Hilgenkamp, G. Rijnders, D. Visentin, L. Sangaletti, Phys. Rev. B 87, 075435 (2013)CrossRefGoogle Scholar
  12. 12.
    Y.Z. Chen, N. Bovet, F. Trier, D.V. Christensen, F.M. Qu, N.H. Andersen, T. Kasama, W. Zhang, R. Giraud, J. Dufouleur, T.S. Jespersen, J.R. Sun, A. Smith, J. Nygård, L. Lu, B. Büchner, B.G. Shen, S. Linderoth, N. Pryds, Nat. Commun. 4, 1371 (2013)CrossRefGoogle Scholar
  13. 13.
    Y.Z. Chen, N. Bovet, T. Kasama, W.W. Gao, S. Yazdi, C. Ma, N. Pryds, S. Linderoth, Adv. Mater. 26, 1462 (2013)CrossRefGoogle Scholar
  14. 14.
    P. Schütz, F. Pfaff, P. Scheiderer, Y.Z. Chen, N. Pryds, M. Gorgoi, M. Sing, R. Claessen, Phys. Rev. B 91, 165118 (2015)CrossRefGoogle Scholar
  15. 15.
    W. Meevasana, P. King, R.H. He, S.K. Mo, M. Hashimoto, A. Tamai, P. Songsiriritthigul, F. Baumberger, Z.X. Shen, Nat. Mater. 10, 114 (2011)CrossRefGoogle Scholar
  16. 16.
    A.F. Santander-Syro, O. Copie, T. Kondo, F. Fortuna, S. Pailhès, R. Weht, X.G. Qiu, F. Bertran, A. Nicolaou, A. Taleb-Ibrahimi, P. Le Fèvre, G. Herranz, M. Bibes, N. Reyren, Y. Apertet, P. Lecoeur, A. Barthélémy, M.J. Rozenberg, Nature 469, 189 (2011)CrossRefGoogle Scholar
  17. 17.
    L. Dudy, M. Sing, P. Scheiderer, J.D. Denlinger, P. Schütz, J. Gabel, M. Buchwald, C. Schlueter, T.L. Lee, R. Claessen, Adv. Mater. 28, 7443 (2016)CrossRefGoogle Scholar
  18. 18.
    A. Brinkman, M. Huijben, M. van Zalk, J. Huijben, U. Zeitler, J.C. Maan, W.G. van der Wiel, G. Rijnders, D.H.A. Blank, H. Hilgenkamp, Nat. Mater. 6, 493 (2007)CrossRefGoogle Scholar
  19. 19.
    C. Cancellieri, N. Reyren, S. Gariglio, A.D. Caviglia, A. Fête, J.M. Triscone, Europhys. Lett. 91, 17004 (2010)CrossRefGoogle Scholar
  20. 20.
    N.C. Bristowe, P.B. Littlewood, E. Artacho, Phys. Rev. B 83, 205405 (2011)CrossRefGoogle Scholar
  21. 21.
    P. Scheiderer, F. Pfaff, J. Gabel, M. Kamp, M. Sing, R. Claessen, Phys. Rev. B 92, 195422 (2015)CrossRefGoogle Scholar
  22. 22.
    L.C. Davis, Phys. Rev. B 25, 2912 (1982)CrossRefGoogle Scholar
  23. 23.
    J. W. Allen, Resonant photoemission of solids with strongly correlated electrons, in Synchrotron Radiation Research: Advances in Surface Science and Low Dimensional Science, ed. by R.F. Bachrach (Plenum, New York, 1992)CrossRefGoogle Scholar
  24. 24.
    G. Drera, F. Banfi, F.F. Canova, P. Borghetti, L. Sangaletti, F. Bondino, E. Magnano, J. Huijben, M. Huijben, G. Rijnders, D.H.A. Blank, H. Hilgenkamp, A. Brinkman, Appl. Phys. Lett. 98, 052907 (2011)CrossRefGoogle Scholar
  25. 25.
    G. Berner, M. Sing, H. Fujiwara, A. Yasui, Y. Saitoh, A. Yamasaki, Y. Nishitani, A. Sekiyama, N. Pavlenko, T. Kopp, C. Richter, J. Mannhart, S. Suga, R. Claessen, Phys. Rev. Lett. 110, 247601 (2013)CrossRefGoogle Scholar
  26. 26.
    C. Cancellieri, M.L. Reinle-Schmitt, M. Kobayashi, V.N. Strocov, P.R. Willmott, D. Fontaine, P. Ghosez, A. Filippetti, P. Delugas, V. Fiorentini, Phys. Rev. B 89, 121412(R) (2014)CrossRefGoogle Scholar
  27. 27.
    Y. Aiura, I. Hase, H. Bando, T. Yasue, T. Saitoh, D.S. Dessau, Surf. Sci. 515, 61 (2002)CrossRefGoogle Scholar
  28. 28.
    J. Shen, H. Lee, R. Valentí, H.O. Jeschke, Phys. Rev. B 86, 195119 (2012)CrossRefGoogle Scholar
  29. 29.
    C.W. Lin, A.A. Demkov, Phys. Rev. Lett. 111, 217601 (2013)CrossRefGoogle Scholar
  30. 30.
    H.O. Jeschke, J. Shen, R. Valentí, New J. Phys. 17, 023034 (2015)CrossRefGoogle Scholar
  31. 31.
    M. Altmeyer, H.O. Jeschke, O. Hijano-Cubelos, C. Martins, F. Lechermann, K. Koepernik, M.J.R.A.F. Santander-Syro, R. Valentí, M. Gabay, Phys. Rev. Lett. 116, 157203 (2016)CrossRefGoogle Scholar
  32. 32.
    F. Lechermann, H.O. Jeschke, A.J. Kim, S. Backes, R. Valentí, Phys. Rev. B 93, 121103(R) (2016)CrossRefGoogle Scholar
  33. 33.
    T. Kaurila, J. Väyrynen, M. Isokallio, J. Phys. Condens. Matter 9, 6533 (1997)CrossRefGoogle Scholar
  34. 34.
    S. Thiess, T.L. Lee, F. Bottind, J. Zegenhagen, Solid State Commun. 150, 553 (2010)CrossRefGoogle Scholar
  35. 35.
    S.M. Walker, F.Y. Bruno, Z. Wang, A. de la Torre, S. Riccó, A. Tamai, T.K. Kim, M. Hoesch, M. Shi, M.S. Bahramy, P.D.C. King, F. Baumberger, Adv. Mater. 27, 3894 (2015)CrossRefGoogle Scholar
  36. 36.
    M.L. Knotek, P.J. Feibelman, Phys. Rev. Lett. 40, 964 (1978)CrossRefGoogle Scholar
  37. 37.
  38. 38.
    J. Gabel, M. Zapf, P. Scheiderer, P. Schütz, L. Dudy, M. Stübinger, C. Schlueter, T.L. Lee, M. Sing, R. Claessen (2016) (Submitted for publication)Google Scholar
  39. 39.
    T. Rödel, C. Bareille, F. Fortuna, C. Baumier, F. Bertran, P. Le Fèvre, M. Gabay, O. Hijano Cubelos, M.J. Rozenberg, T. Maroutian, P. Lecoeur, A. Santander-Syro, Phys. Rev. Appl. 1, 051002 (2014)Google Scholar
  40. 40.
    S. McKeown Walker, A. de la Torre, F.Y. Bruno, A. Tamai, T.K. Kim, M. Hoesch, M. Shi, M.S. Bahramy, P.D.C. King, F. Baumberger, Phys. Rev. Lett. 113, 177601 (2014)Google Scholar
  41. 41.
    Z. Wang, Z. Zhong, X. Hao, S. Gerhold, B. Stöger, M. Schmid, J. Sánchez-Barriga, A. Varykhalov, C. Franchini, K. Held, U. Diebold, PNAS 111, 3933 (2014)CrossRefGoogle Scholar
  42. 42.
    L. Li, C. Richter, J. Mannhart, R.C. Ashoori, Nat. Phys. 7, 762 (2011)CrossRefGoogle Scholar
  43. 43.
    J.A. Bert, B. Kalisky, C. Bell, M. Kim, Y. Hikita, H.Y. Hwang, K.A. Moler, Nat. Phys. 7, 767 (2011)CrossRefGoogle Scholar
  44. 44.
    Y. Chen, N. Pryds, J.E. Kleibeuker, G. Koster, J. Sun, E. Stamate, B. Shen, G. Rijnders, S. Linderoth, Nano Lett. 11, 3774 (2011)CrossRefGoogle Scholar
  45. 45.
    G. Herranz, F. Sánchez, N. Dix, M. Scigaj, J. Fontcuberta, Sci. Rep. 2, 758 (2012)CrossRefGoogle Scholar
  46. 46.
    E. Slooten, Z. Zhong, H.J.A. Molegraaf, P.D. Eerkes, S. de Jong, F. Massee, E. van Heumen, M.K. Kruize, S. Wenderich, J.E. Kleibeuker, M. Gorgoi, H. Hilgenkamp, A. Brinkman, M. Huijben, G. Rijnders, D.H.A. Blank, G. Koster, P.J. Kelly, M.S. Golden, Phys. Rev. B 87, 085128 (2013)CrossRefGoogle Scholar
  47. 47.
    Z. Zhong, P.X. Xu, P.J. Kelly, Phys. Rev. B 82, 165127 (2010)CrossRefGoogle Scholar
  48. 48.
    Y. Li, S.N. Phattalung, S. Limpijumnong, J. Kim, J. Yu, Phys. Rev. B 84, 245307 (2011)CrossRefGoogle Scholar
  49. 49.
    N. Pavlenko, T. Kopp, E.Y. Tsymbal, J. Mannhart, G.A. Sawatzky, Phys. Rev. B 86, 064431 (2012)CrossRefGoogle Scholar
  50. 50.
    L. Yu, A. Zunger, Nat. Commun. 5, 5118 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physikalisches Institut and Röntgen Center for Complex Material Systems (RCCM), Universität WürzburgWürzburgGermany

Personalised recommendations