Advertisement

ARPES Studies of Two-Dimensional Electron Gases at Transition Metal Oxide Surfaces

  • Siobhan McKeown Walker
  • Flavio Y. Bruno
  • Felix Baumberger
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 266)

Abstract

High mobility two-dimensional electron liquids (2DELs) underpin today’s silicon based devices and are of fundamental importance for the emerging field of oxide electronics. Such 2DELs are usually created by engineering band offsets and charge transfer at heterointerfaces. However, in 2011 it was shown that highly itinerant 2DELs can also be induced at bare surfaces of different transition metal oxides where they are far more accessible to high resolution angle resolved photoemission (ARPES) experiments. Here we review work from this nascent field which has led to a systematic understanding of the subband structure arising from quantum confinement of highly anisotropic transition metal d-states along different crystallographic directions. We further discuss the role of different surface preparations and the origin of surface 2DELs, the understanding of which has permitted control over 2DEL carrier densities. Finally, we discuss signatures of strong many-body interactions and how spectroscopic data from surface 2DELs may be related to the transport properties of interface 2DELs in the same host materials.

Notes

Acknowledgements

The authors acknowledge financial support through the University of Geneva and the Swiss National Science Foundation and would like to thank C. Bernhard, R. Claessen, A. Fête, S. Gariglio, K. Held, P. D. C. King, F. Lechermann, L. D. Marks, W. Meevasana, N. C. Plumb, M. Radovic, V. Strocov, A. Tamai, J. M. Triscone, D. van der Marel and Z. Wang for discussions.

References

  1. 1.
    P. Zubko, S. Gariglio, P. Gabay, M. Ghosez, J.-M. Triscone, Interface physics in complex oxide heterostructures. Ann. Rev. Condens. Matter Phys. 2, 141–165 (2011)CrossRefGoogle Scholar
  2. 2.
    J. Mannhart, D.G. Schlom, Oxide interfaces-an opportunity for electronics. Science 327, 1607–1611 (2010)CrossRefGoogle Scholar
  3. 3.
    Y. Tokura, Y. Taguchi, Y. Okada, Y. Fujishima, T. Arima, K. Kumagai, Y. Iye, Filling dependence of electronic properties on the verge of metal-Mott-insulator transition in Sr\(_{1-x}\)La\(_x\)TiO\(_3\). Phys. Rev. Lett. 70, 2126 (1993)CrossRefGoogle Scholar
  4. 4.
    R. Jany, C. Richter, C. Woltmann, G. Pfanzelt, B. Förg, M. Rommel, T. Reindl, U. Waizmann, J. Weis, J.A. Mundy, D.A. Muller, H. Boschker, J. Mannhart, Monolithically integrated circuits from functional oxides. Adv. Mater. Interfaces 1, 1300031 (2014)CrossRefGoogle Scholar
  5. 5.
    M. Salluzzo, J.C. Cezar, N.B. Brookes, V. Bisogni, G.M. De Luca, C. Richter, S. Thiel, J. Mannhart, M. Huijben, A. Brinkman, G. Rijnders, G. Ghiringhelli, Orbital reconstruction and the two-dimensional electron gas at the LaAlO\(_3\)/SrTiO\(_3\) interface. Phys. Rev. Lett. 102, 166804 (2009)CrossRefGoogle Scholar
  6. 6.
    G. Berner, S. Glawion, J. Walde, F. Pfaff, H. Hollmark, L.-C. Duda, S. Paetel, C. Richter, J. Mannhart, M. Sing, R. Claessen, LaAlO\(_3\)/SrTiO\(_3\) oxide heterostructures studied by resonant inelastic X-ray scattering. Phys. Rev. B 82, 241405 (2010)Google Scholar
  7. 7.
    K.-J. Zhou, M. Radovic, J. Schlappa, V. Strocov, R. Frison, J. Mesot, L. Patthey, T. Schmitt, Localized and delocalized Ti 3\(d\) carriers in LaAlO\(_3\)/SrTiO\(_3\) superlattices revealed by resonant inelastic X-ray scattering. Phys. Rev. B 83, 201402(R) (2011)CrossRefGoogle Scholar
  8. 8.
    A. Fête, S. Gariglio, A.D. Caviglia, J.-M. Triscone, M. Gabay, Rashba induced magnetoconductance oscillations in the LaAlO\(_3\)-SrTiO\(_3\) heterostructure. Phys. Rev. B 86, 201105(R) (2012)CrossRefGoogle Scholar
  9. 9.
    M. Kim, C. Bell, Y. Kozuka, M. Kurita, Y. Hikita, H.Y. Hwang, Fermi surface and superconductivity in low-density high-mobility \(\delta \)-doped SrTiO\(_3\). Phys. Rev. Lett. 107, 106801 (2011)CrossRefGoogle Scholar
  10. 10.
    A. McCollam, S. Wenderich, M.K. Kruize, V.K. Guduru, H.J.A. Molegraaf, M. Huijben, G. Koster, D.H.A. Blank, G. Rijnders, A. Brinkman, H. Hilgenkamp, U. Zeitler, J.C. Maan, Quantum oscillations and subband properties of the two-dimensional electron gas at the LaAlO\(_3\)/SrTiO\(_3\) interface. APL Mater. 2, 022102 (2014)CrossRefGoogle Scholar
  11. 11.
    P. Moetakef, D.G. Ouellette, J.R. Williams, S. James Allen, L. Balents, D. Goldhaber-Gordon, S. Stemmer, Quantum oscillations from a two-dimensional electron gas at a Mott/band insulator interface. Appl. Phys. Lett. 101, 151604 (2012)CrossRefGoogle Scholar
  12. 12.
    W. Meevasana, P.D.C. King, R.H. He, S.-K. Mo, M. Hashimoto, A. Tamai, P. Songsiriritthigul, F. Baumberger, Z.-X. Shen, Creation and control of a two-dimensional electron liquid at the bare SrTiO\(_3\) surface. Nat. Mater. 10, 114–118 (2011)CrossRefGoogle Scholar
  13. 13.
    A.F. Santander-Syro, O. Copie, T. Kondo, F. Fortuna, S. Pailhès, R. Weht, X.G. Qiu, F. Bertran, A. Nicolaou, A. Taleb-Ibrahimi, P. Le Fèvre, G. Herranz, M. Bibes, N. Reyren, Y. Apertet, P. Lecoeur, A. Barthélémy, M.J. Rozenberg, Two-dimensional electron gas with universal subbands at the surface of SrTiO\(_3\). Nature 469, 189–193 (2011)CrossRefGoogle Scholar
  14. 14.
    C. Bareille, F. Fortuna, T.C. Rödel, F. Bertran, M. Gabay, O.H. Cubelos, A. Taleb-Ibrahimi, P. Le Fèvre, M. Bibes, A. Barthélémy, T. Maroutian, P. Lecoeur, M.J. Rozenberg, A.F. Santander-Syro, Two-dimensional electron gas with six-fold symmetry at the (111) surface of KTaO3. Sci. Rep. 4, 3586 (2014)Google Scholar
  15. 15.
    P.D.C. King, R.H. He, T. Eknapakul, P. Buaphet, S.-K. Mo, Y. Kaneko, S. Harashima, Y. Hikita, M.S. Bahramy, C. Bell, Z. Hussain, Y. Tokura, Z.-X. Shen, H.Y. Hwang, F. Baumberger, W. Meevasana, Subband structure of a two-dimensional electron gas formed at the polar surface of the strong spin-orbit perovskite KTaO\(_3\). Phys. Rev. Lett. 108, 117602 (2012)CrossRefGoogle Scholar
  16. 16.
    A.F. Santander-Syro, C. Bareille, F. Fortuna, O. Copie, M. Gabay, F. Bertran, A. Taleb-Ibrahimi, P. Le Fèvre, G. Herranz, N. Reyren, M. Bibes, A. Barthélémy, P. Lecoeur, J. Guevara, M.J. Rozenberg, Orbital symmetry reconstruction and strong mass renormalization in the two-dimensional electron gas at the surface of KTaO\(_3\). Phys. Rev. B 86, 121107(R) (2012)CrossRefGoogle Scholar
  17. 17.
    S. Moser, L. Moreschini, J. Jaćimović, O.S. Barišić, H. Berger, A. Magrez, Y.J. Chang, K.S. Kim, A. Bostwick, E. Rotenberg, L. Forró, M. Grioni, Tunable polaronic conduction in anatase TiO\(_2\). Phys. Rev. Lett. 110, 196403 (2013)CrossRefGoogle Scholar
  18. 18.
    T.C. Rödel, F. Fortuna, F. Bertran, M. Gabay, M.J. Rozenberg, A.F. Santander-Syro, P. Le Fèvre, Engineering two-dimensional electron gases at the (001) and (101) surfaces of TiO\(_2\) anatase using light. Phys. Rev. B 92, 041106(R) (2015)CrossRefGoogle Scholar
  19. 19.
    P.D.C. King, T.D. Veal, C.F. McConville, J. Zúñiga Pérez, V. Muñoz Sanjosé, M. Hopkinson, E.D.L. Rienks, M.F. Jensen, P. Hofmann, Surface band-gap narrowing in quantized electron accumulation layers. Phys. Rev. Lett. 104, 256803 (2010)Google Scholar
  20. 20.
    L.F.J. Piper, L. Colakerol, P.D.C. King, A. Schleife, J. Zúñiga Pérez, P.A. Glans, T. Learmonth, A. Federov, T.D. Veal, F. Fuchs, V. Muñoz Sanjosé, F. Bechstedt, C.F. McConville, K.E. Smith, Observation of quantized subband states and evidence for surface electron accumulation in CdO from angle-resolved photoemission spectroscopy. Phys. Rev. B 78, 165127 (2008)Google Scholar
  21. 21.
    K.H.L. Zhang, R.G. Egdell, F. Offi, S. Iacobucci, L. Petaccia, S. Gorovikov, P.D.C. King, Microscopic origin of electron accumulation in In\(_2\)O\(_3\). Phys. Rev. Lett. 110, 056803 (2013)CrossRefGoogle Scholar
  22. 22.
    L. Forro, O. Chauvet, D. Emin, L. Zuppiroli, H. Berger, F. Lévy, High mobility ntype charge carriers in large single crystals of anatase (TiO2). J. Appl. Phys. 75, 633–635 (1994)CrossRefGoogle Scholar
  23. 23.
    J. Jaćimović, R. Gaál, A. Magrez, J. Piatek, L. Forró, L.S. Nakao, Y. Hirose, T. Hasegawa, Low temperature resistivity, thermoelectricity, and power factor of Nb doped anatase TiO\(_2\). Appl. Phys. Lett. 102, 013901 (2013)CrossRefGoogle Scholar
  24. 24.
    J. Schooley, W. Hosler, E. Ambler, J. Becker, M. Cohen, C. Koonce, Dependence of the superconducting transition temperature on carrier concentration in semiconducting SrTiO\(_3\). Phys. Rev. Lett. 14, 305–307 (1965)CrossRefGoogle Scholar
  25. 25.
    A. Spinelli, M.A. Torija, C. Liu, C. Jan, C. Leighton, Electronic transport in doped SrTiO\(_{3}\): conduction mechanisms and potential applications. Phys. Rev. B 81, 155110 (2010)CrossRefGoogle Scholar
  26. 26.
    H. Uwe, J. Kinoshita, K. Yoshihiro, C. Yamanouchi, T. Sakudo, Evidence for light and heavy conduction electrons at the zone center in KTaO\(_3\). Phys. Rev. B 19, 3041–3044 (1979)CrossRefGoogle Scholar
  27. 27.
    S.H. Wemple, Some transport properties of oxygen-deficient single-crystal potassium tantalate (KTaO\(_3\)). Phys. Rev. 137, A1575 (1965)CrossRefGoogle Scholar
  28. 28.
    L. Dudy, M. Sing, P. Scheiderer, J.D. Denlinger, P. Schütz, J. Gabel, M. Buchwald, C. Schlueter, T.-L. Lee, R. Claessen, In Situ control of separate electronic phases on SrTiO3 surfaces by oxygen dosing. Adv. Mater. 28, 7443–7449 (2016)CrossRefGoogle Scholar
  29. 29.
    N.C. Plumb, M. Salluzzo, E. Razzoli, M. Månsson, M. Falub, J. Krempasky, C.E. Matt, J. Chang, M. Schulte, J. Braun, H. Ebert, J. Minár, B. Delley, K.-J. Zhou, T. Schmitt, M. Shi, J. Mesot, L. Patthey, M. Radović, Mixed dimensionality of confined conducting electrons in the surface region of SrTiO\(_3\). Phys. Rev. Lett. 113, 086801 (2014)CrossRefGoogle Scholar
  30. 30.
    S. McKeown Walker, F.Y. Bruno, Z. Wang, A. de la Torre, S. Riccó, A. Tamai, T.K. Kim, M. Hoesch, M. Shi, M.S. Bahramy, P.D.C. King, F. Baumberger, Carrier-density control of the SrTiO\(_3\) (001) surface 2D electron gas studied by ARPES. Adv. Mater. 27, 3894–3899 (2015)CrossRefGoogle Scholar
  31. 31.
    S. McKeown Walker, A. de la Torre, F.Y. Bruno, A. Tamai, T.K. Kim, M. Hoesch, M. Shi, M.S. Bahramy, P.D.C. King F. Baumberger, Control of a two-dimensional electron gas on SrTiO3(111) by atomic oxygen. Phys. Rev. Lett. 113, 177601 (2014)Google Scholar
  32. 32.
    Y. Aiura, I. Hase, H. Bando, T. Yasue, T. Saitoh, D.S. Dessau, Photoemission study of the metallic state of lightly electron-doped SrTiO\(_3\). Surf. Sci. 515, 61–74 (2002)CrossRefGoogle Scholar
  33. 33.
    V.E. Henrich, G. Dresselhaus, H.J. Zeiger, Surface defects and the electronic structure of SrTiO\(_3\) surfaces. Phys. Rev. B 17, 4908–4921 (1978)CrossRefGoogle Scholar
  34. 34.
    H.O. Jeschke, J. Shen, R. Valenti, Localized versus itinerant states created by multiple oxygen vacancies in SrTiO\(_3\). New J. Phys. 17, 023034 (2015)CrossRefGoogle Scholar
  35. 35.
    M.L. Knotek, Stimulated desorption from surfaces. Phys. Today 37, 24 (1984)CrossRefGoogle Scholar
  36. 36.
    M.L. Knotek, P.J. Feibelman, Ion desorption by core-hole auger decay. Phys. Rev. Lett. 40, 964–967 (1978)CrossRefGoogle Scholar
  37. 37.
    C. Lin, A.A. Demkov, Electron correlation in oxygen vacancy in SrTiO\(_3\). Phys. Rev. Lett. 111, 217601 (2013)CrossRefGoogle Scholar
  38. 38.
    T.C. Rödel, C. Bareille, F. Fortuna, C. Baumier, F. Bertran, P. Le Fèvre, M. Gabay, O. Hijano Cubelos, M.J. Rozenberg, T. Maroutian, P. Lecoeur, A.F. Santander-Syro, Orientational tuning of the fermi sea of confined electrons at the SrTiO\(_3\). Phys. Rev. Appl. 1, 051002 (2014)CrossRefGoogle Scholar
  39. 39.
    Z. Wang, Z. Zhong, X. Hao, S. Gerhold, B. Stöger, M. Schmid, J. Sánchez-Barriga, A. Varykhalov, C. Franchini, K. Held, U. Diebold, Anisotropic two-dimensional electron gas at SrTiO3(110). Proc. Natl. Acad. Sci. U.S. Am. 111, 3933–3937 (2014)CrossRefGoogle Scholar
  40. 40.
    C. Chen, J. Avila, E. Frantzeskakis, A. Levy, M.C. Asensio, Observation of a two-dimensional liquid of Fröhlich polarons at the bare SrTiO3 surface. Nat. Commun. 6, 8585 (2015)CrossRefGoogle Scholar
  41. 41.
    P. Delugas, V. Fiorentini, A. Mattoni, A. Filippetti, Intrinsic origin of two-dimensional electron gas at the (001) surface of SrTiO\(_3\). Phys. Rev. B 91, 115315 (2015)CrossRefGoogle Scholar
  42. 42.
    P.D.C. King, S. McKeown Walker, A. Tamai, A. de la Torre, T. Eknapakul, P. Buaphet, S.-K. Mo, W. Meevasana, M.S. Bahramy, F. Baumberger, Quasiparticle dynamics and spin-orbital texture of the SrTiO\(_3\) two-dimensional electron gas. Nat. Commun. 5, 3414 (2014)Google Scholar
  43. 43.
    D. van der Marel, J.L.M. van Mechelen, I.I. Mazin, Common Fermi-liquid origin of T\(^2\) resistivity and superconductivity in n-type SrTiO\(_3\). Phys. Rev. B 84, 205111 (2011)CrossRefGoogle Scholar
  44. 44.
    J.L.M. van Mechelen, D. van der Marel, C. Grimaldi, A. Kuzmenko, N. Armitage, N. Reyren, H. Hagemann, I. Mazin, Electron-phonon interaction and charge carrier mass enhancement in SrTiO\(_3\). Phys. Rev. Lett. 100, 226403 (2008)CrossRefGoogle Scholar
  45. 45.
    T.C. Rödel, F. Fortuna, S. Sengupta, E. Frantzeskakis, P.L. Fèvre, F. Bertran, B. Mercey, S. Matzen, G. Agnus, T. Maroutian, P. Lecoeur, A.F. Santander-Syro, Universal fabrication of 2D electron systems in functional oxides. Adv. Mater. 28, 1976–1980 (2016)CrossRefGoogle Scholar
  46. 46.
    L.W. van Heeringen, G.A. De Wijs, A. McCollam, J.C. Maan, A. Fasolino, \(k\cdot p\) subband structure of the LaAlO\(_3\)/SrTiO\(_3\) interface. Phys. Rev. B 88, 205104 (2013)CrossRefGoogle Scholar
  47. 47.
    Z. Wang, S. McKeown Walker, A. Tamai, Y. Wang, Z. Ristic, F.Y. Bruno, A. de la Torre, S. Riccò, N.C. Plumb, M. Shi, P. Hlawenka, J. Sánchez-Barriga, A. Varykhalov, T.K. Kim, M. Hoesch, P.D.C. King, W. Meevasana, U. Diebold, J. Mesot, B. Moritz, T.P. Devereaux, M. Radovic, F. Baumberger, Tailoring the nature and strength of electron-phonon interactions in the SrTiO\(_3\)(001) 2D electron liquid. Nat. Mater. 15, 835–839 (2016)Google Scholar
  48. 48.
    A. Fête, C. Cancellieri, D. Li, D. Stornaiuolo, A.D. Caviglia, S. Gariglio, J.-M. Triscone, Growth-induced electron mobility enhancement at the LaAlO\(_3\)/SrTiO\(_3\) interface. Appl. Phys. Lett. 106, 051604 (2015)CrossRefGoogle Scholar
  49. 49.
    A.F. Santander-Syro, F. Fortuna, C. Bareille, T.C. Rödel, G. Landolt, N.C. Plumb, J.H. Dil, M. Radović, Giant spin splitting of the two-dimensional electron gas at the surface of SrTiO\(_3\). Nat. Mater. 13, 1085–1090 (2014)CrossRefGoogle Scholar
  50. 50.
    M. Stengel, First-principles modeling of electrostatically doped perovskite systems. Phys. Rev. Lett. 106, 136803 (2011)CrossRefGoogle Scholar
  51. 51.
    M.S. Bahramy, P.D.C. King, A. de la Torre, J. Chang, M. Shi, L. Patthey, G. Balakrishnan, P. Hofmann, R. Arita, N. Nagaosa, F. Baumberger, Emergent quantum confinement at topological insulator surfaces. Nat. Commun. 3, 1159 (2012)Google Scholar
  52. 52.
    S. Gariglio, A. Fête, J.-M. Triscone, Electron confinement at the LaAlO\(_3\)/SrTiO\(_3\) interface. J. Phys. Condens. Matter 27, 283201 (2015)CrossRefGoogle Scholar
  53. 53.
    P.D.C. King, T. Veal, C. McConville, Nonparabolic coupled Poisson-Schrödinger solutions for quantized electron accumulation layers: band bending, charge profile, and subbands at InN surfaces. Phys. Rev. B 77, 125305 (2008)CrossRefGoogle Scholar
  54. 54.
    S. McKeown Walker, S. Riccò, F.Y. Bruno, A. de la Torre, A. Tamai, E. Golias, A. Varykhalov, D. Marchenko, M. Hoesch, M.S. Bahramy, P.D.C. King, J. Sánchez-Barriga, F. Baumberger, Absence of giant spin splitting in the two-dimensional electron liquid at the surface of SrTiO\(_3\) (001). Phys. Rev. B 93, 245143 (2016)CrossRefGoogle Scholar
  55. 55.
    R. Yukawa, K. Ozawa, S. Yamamoto, R.-Y. Liu, I. Matsuda, Anisotropic effective mass approximation model to calculate multiple subband structures at wide-gap semiconductor surfaces: application to accumulation layers of SrTiO\(_3\) and ZnO. Surf. Sci. 641, 224–230 (2015)CrossRefGoogle Scholar
  56. 56.
    M. Basletic, J.-L. Maurice, C. Carrétéro, G. Herranz, O. Copie, M. Bibes, E. Jacquet, K. Bouzehouane, S. Fusil, A. Barthélémy, Mapping the spatial distribution of charge carriers in LaAlO\(_3\)/SrTiO\(_3\) heterostructures. Nat. Mater. 7, 621–625 (2008)Google Scholar
  57. 57.
    N. Reyren, S. Gariglio, A.D. Caviglia, D. Jaccard, T. Schneider, J.-M. Triscone, Anisotropy of the superconducting transport properties of the LaAlO\(_3\)/SrTiO\(_3\) interface. Appl. Phys. Lett. 94, 112506 (2009)CrossRefGoogle Scholar
  58. 58.
    C. Cancellieri, M.L. Reinle-Schmitt, M. Kobayashi, V.N. Strocov, T. Schmitt, P.R. Willmott, S. Gariglio, J.-M. Triscone, Interface fermi states of LaAlO\(_3\)/SrTiO\(_3\) and related heterostructures. Phys. Rev. Lett. 110, 137601 (2013)CrossRefGoogle Scholar
  59. 59.
    A. Dubroka, M. Rössle, K.W. Kim, V.K. Malik, L. Schultz, S. Thiel, C.W. Schneider, J. Mannhart, G. Herranz, O. Copie, M. Bibes, A. Barthélémy, C. Bernhard, Dynamical response and confinement of the electrons at the LaAlO\(_3\)/SrTiO\(_3\) interface. Phys. Rev. Lett. 104, 156807 (2010)CrossRefGoogle Scholar
  60. 60.
    M. Sing, G. Berner, K. Goß, A. Müller, A. Ruff, A. Wetscherek, S. Thiel, J. Mannhart, S.A. Pauli, C.W. Schneider, P.R. Willmott, M. Gorgoi, F. Schäfers, R. Claessen, Profiling the interface electron gas of LaAlO\(_3\)/SrTiO\(_3\) heterostructures with hard X-ray photoelectron spectroscopy. Phys. Rev. Lett. 102, 176805 (2009)CrossRefGoogle Scholar
  61. 61.
    O. Copie, V. Garcia, C. Bödefeld, C. Carrétéro, M. Bibes, G. Herranz, E. Jacquet, J.-L. Maurice, B. Vinter, S. Fusil, K. Bouzehouane, H. Jaffrès, A. Barthélémy, Towards two-dimensional metallic behavior at LaAlO\(_3\)/SrTiO\(_3\) interfaces. Phys. Rev. Lett. 102, 216804 (2009)CrossRefGoogle Scholar
  62. 62.
    M. Altmeyer, H.O. Jeschke, O. Hijano-Cubelos, C. Martins, F. Lechermann, K. Koepernik, A.F. Santander-Syro, M.J. Rozenberg, R. Valentí, M. Gabay, Magnetism, spin texture, and in-gap states: atomic specialization at the surface of oxygen-deficient SrTiO\(_3\). Phys. Rev. Lett. 116, 157203 (2016)CrossRefGoogle Scholar
  63. 63.
    A.C. Garcia-Castro, M.G. Vergniory, E. Bousquet, A.H. Romero, Spin texture induced by oxygen vacancies in strontium perovskite (001) surfaces: a theoretical comparison between SrTiO\(_3\) and SrHfO\(_3\). Phys. Rev. B 93, 045405 (2016)CrossRefGoogle Scholar
  64. 64.
    Y.A. Bychkov, E.I. Rashba, Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 39, 78–81 (1984)Google Scholar
  65. 65.
    J. Nitta, T. Akazaki, H. Takayanagi, T. Enoki, Gate control of spin-orbit interaction in an inverted In\(_{0.53}\)Ga\(_{0.47}\)As/In\(_{0.48}\)Al\(_{0.48}\)As heterostructure. Phys. Rev. Lett. 78, 1335–1338 (1997)CrossRefGoogle Scholar
  66. 66.
    H.C. Koo, J.H. Kwon, J. Eom, J. Chang, S.H. Han, M. Johnson, Control of spin precession in a spin-injected field effect transistor. Science 325, 1515–1518 (2009)CrossRefGoogle Scholar
  67. 67.
    A.D. Caviglia, M. Gabay, S. Gariglio, N. Reyren, C. Cancellieri, J.-M. Triscone, Tunable Rashba spin-orbit interaction at oxide interfaces. Phys. Rev. Lett. 104, 126803 (2010)CrossRefGoogle Scholar
  68. 68.
    S. Hurand, A. Jouan, C. Feuillet-Palma, G. Singh, J. Biscaras, E. Lesne, N. Reyren, A. Barthélémy, M. Bibes, J.E. Villegas, C. Ulysse, X. Lafosse, M. Pannetier-Lecoeur, S. Caprara, M. Grilli, J. Lesueur, N. Bergeal, Field-effect control of superconductivity and Rashba spin-orbit coupling in top-gated LaAlO\(_3\)/SrTiO\(_3\) devices. Sci. Rep. 5, 12751 (2015)CrossRefGoogle Scholar
  69. 69.
    H. Liang, L. Cheng, L. Wei, Z. Luo, G. Yu, C. Zeng, Z. Zhang, Nonmonotonically tunable Rashba spin-orbit coupling by multiple-band filling control in SrTiO\(_3\)-based interfacial \(d\)-electron gases. Phys. Rev. B 92, 075309 (2015)CrossRefGoogle Scholar
  70. 70.
    H. Nakamura, T. Koga, T. Kimura, Experimental evidence of cubic Rashba effect in an inversion-symmetric oxide. Phys. Rev. Lett. 108, 206601 (2012)CrossRefGoogle Scholar
  71. 71.
    Z. Zhong, A. Tóth, K. Held, Theory of spin-orbit coupling at LaAlO\(_3\)/SrTiO\(_3\) interfaces and SrTiO\(_3\) surfaces. Phys. Rev. B 87, 161102 (2013)CrossRefGoogle Scholar
  72. 72.
    G. Khalsa, B. Lee, A.H. MacDonald, Theory of t\(_{2g}\) electron-gas Rashba interactions. Phys. Rev. B 88, 041302 (2013)CrossRefGoogle Scholar
  73. 73.
    P. Kim, K.T. Kang, G. Go, J.H. Han, Nature of orbital and spin Rashba coupling in the surface bands of SrTiO\(_3\) and KTaO\(_3\). Phys. Rev. B 90, 205423 (2014)CrossRefGoogle Scholar
  74. 74.
    Y. Kim, R.M. Lutchyn, C. Nayak, Origin and transport signatures of spin-orbit interactions in one- and two-dimensional SrTiO\(_3\)-based heterostructures. Phys. Rev. B 87, 245121 (2013)CrossRefGoogle Scholar
  75. 75.
    K.V. Shanavas, Theoretical study of the cubic Rashba effect at the SrTiO\(_3\)(001) surfaces. Phys. Rev. B 93, 045108 (2016)CrossRefGoogle Scholar
  76. 76.
    J. Zhou, W.Y. Shan, D. Xiao, Spin responses and effective Hamiltonian for the two-dimensional electron gas at the oxide interface LaAlO\(_3\)/ SrTiO\(_3\). Phys. Rev. B 91, 241302(R) (2015)CrossRefGoogle Scholar
  77. 77.
    A. Annadi, Q. Zhang, X. Renshaw Wang, N. Tuzla, K. Gopinadhan, W.M. Lü, A. Roy Barman, Z.Q. Liu, A. Srivastava, S. Saha, Y.L. Zhao, S.W. Zeng, S. Dhar, E. Olsson, B. Gu, S. Yunoki, S. Maekawa, H. Hilgenkamp, T. Venkatesan, Ariando, Anisotropic two-dimensional electron gas at the LaAlO\(_3\)/SrTiO\(_3\) (110) interface. Nat. Commun. 4, 1838 (2013)Google Scholar
  78. 78.
    G. Herranz, F. Sánchez, N. Dix, M. Scigaj, J. Fontcuberta, High mobility conduction at (110) and (111) LaAlO\(_3\)/SrTiO\(_3\) interfaces. Sci. Rep. 2, 758 (2012)CrossRefGoogle Scholar
  79. 79.
    S. Raghavan, J.Y. Zhang, S. Stemmer, Two-dimensional electron liquid at the (111) SmTiO\(_3\)/SrTiO\(_3\) interface. Appl. Phys. Lett. 106, 132104 (2015)CrossRefGoogle Scholar
  80. 80.
    W.E. Doennig, D. Pickett, R. Pentcheva, Massive symmetry breaking in LaAlO\(_3\)/SrTiO\(_3\) (111) quantum wells: a three-orbital strongly correlated generalization of graphene. Phys. Rev. Lett. 111, 126804 (2013)CrossRefGoogle Scholar
  81. 81.
    D. Xiao, W. Zhu, Y. Ran, N. Nagaosa, S. Okamoto, Interface engineering of quantum hall effects in digital transition metal oxide heterostructures. Nat. Commun. 2, 596 (2011)CrossRefGoogle Scholar
  82. 82.
    Z. Wang, Z. Zhong, S. McKeown Walker, Z. Ristic, J.-Z. Ma, F.Y. Bruno, S. Riccò, G. Sangiovanni, G. Eres, N.C. Plumb, L. Patthey, M. Shi, J. Mesot, F. Baumberger, M. Radović, Atomically precise lateral modulation of a two-dimensional electron liquid in anatase TiO\(_2\) thin films. Nano Lett. 17(4), 2561–2567 (2017)CrossRefGoogle Scholar
  83. 83.
    S. McKeown Walker, Two dimensional electron liquids at oxide surfaces studied by angle resolved photoemission spectroscopy. Ph.D. thesis, University of Geneva, 24 Quai Ernest-Ansermet, Geneva, CH-1211, Switzerland (2016)Google Scholar
  84. 84.
    H. Nakamura, T. Kimura, Electric field tuning of spin-orbit coupling in KTaO\(_3\) field-effect transistors. Phys. Rev. B 80, 121308(R) (2009)CrossRefGoogle Scholar
  85. 85.
    K. Ueno, S. Nakamura, H. Shimotani, H.T. Yuan, N. Kimura, T. Nojima, H. Aoki, Y. Iwasa, M. Kawasaki, Discovery of superconductivity in KTaO\(_3\) by electrostatic carrier doping. Nat. Nanotechnol. 6, 408–412 (2011)CrossRefGoogle Scholar
  86. 86.
    K. Zou, S. Ismail-Beigi, K. Kisslinger, X. Shen, D. Su, F.J. Walker, C.H. Ahn, LaTiO\(_3\)/KTaO\(_3\) interfaces: a new two-dimensional electron gas system. APL Mater. 3, 036104 (2015)CrossRefGoogle Scholar
  87. 87.
    S. LaShell, B.A. McDougall, E. Jensen, Spin Splitting of an Au(111) surface state band observed with angle resolved photoelectron spectroscopy. Phys. Rev. Lett. 77, 3419–3422 (1996)CrossRefGoogle Scholar
  88. 88.
    P.D.C. King, R. Hatch, M. Bianchi, R. Ovsyannikov, C. Lupulescu, G. Landolt, B. Slomski, J.H. Dil, D. Guan, J. Mi, E. Rienks, J. Fink, A. Lindblad, S. Svensson, S. Bao, G. Balakrishnan, B. Iversen, J. Osterwalder, W. Eberhardt, F. Baumberger, P. Hofmann, Large tunable Rashba spin splitting of a two-dimensional electron gas in Bi2Se3. Phys. Rev. Lett. 107, 96802 (2011)CrossRefGoogle Scholar
  89. 89.
    R. Winkler, Spin-orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer, Berlin, 2003)CrossRefGoogle Scholar
  90. 90.
    U. Diebold, The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003)CrossRefGoogle Scholar
  91. 91.
    M. Minohara, T. Tachikawa, Y. Nakanishi, Y. Hikita, L.F. Kourkoutis, J.-S. Lee, C.-C. Kao, M. Yoshita, H. Akiyama, C. Bell, H.Y. Hwang, Atomically engineered metal-insulator transition at the TiO\(_ 2\)/LaAlO\(_3\) heterointerface. Nano Lett. 14, 6743–6746 (2014)CrossRefGoogle Scholar
  92. 92.
    T. Sarkar, K. Gopinadhan, J. Zhou, S. Saha, J.M.D. Coey, Y.P. Feng, T.Venkatesan Ariando, Electron transport at the TiO\(_2\) surfaces of rutile, anatase, and strontium titanate: the influence of orbital corrugation. ACS Appl. Mater. Interfaces 7(44), 24616 (2015)CrossRefGoogle Scholar
  93. 93.
    P.D.C. King, H.I. Wei, Y.F. Nie, M. Uchida, C. Adamo, S. Zhu, X. He, I. Božović, D.G. Schlom, K.M. Shen, Atomic-scale control of competing electronic phases in ultrathin LaNiO\(_3\). Nat. Nanotechnol. 9, 443–447 (2014)CrossRefGoogle Scholar
  94. 94.
    K. Yoshimatsu, T. Okabe, H. Kumigashira, S. Okamoto, S. Aizaki, A. Fujimori, M. Oshima, Dimensional-crossover-driven metal-insulator transition in \({\rm{srvo}}_{3}\) ultrathin films. Phys. Rev. Lett. 104, 147601 (2010)CrossRefGoogle Scholar
  95. 95.
    E. Mikheev, B. Himmetoglu, A.P. Kajdos, P. Moetakef, T.A. Cain, C.G. Van De Walle, S. Stemmer, Limitations to the room temperature mobility of two- and three-dimensional electron liquids in SrTiO\(_3\). Appl. Phys. Lett. 106, 062102 (2015)CrossRefGoogle Scholar
  96. 96.
    I. Pallecchi, F. Telesio, D. Li, A. Fête, S. Gariglio, J.-M. Triscone, A. Filippetti, P. Delugas, V. Fiorentini, D. Marré, Giant oscillating thermopower at oxide interfaces. Nat. Commun. 6, 6678 (2015)CrossRefGoogle Scholar
  97. 97.
    J.M. Edge, Y. Kedem, U. Aschauer, N.A. Spaldin, A.V. Balatsky, Quantum critical origin of the superconducting dome in SrTiO\(_3\). Phys. Rev. Lett. 115, 247002 (2015)CrossRefGoogle Scholar
  98. 98.
    L.P. Gor’kov, Phonon mechanism in the most dilute superconductor: \(n\)-type SrTiO\(_3\). Proc. Natl. Acad. Sci. U. S. Am. 113, 4646–4651 (2015)CrossRefGoogle Scholar
  99. 99.
    J.T. Devreese, A.S. Alexandrov, Fröhlich polaron and bipolaron: recent developments. Rep. Prog. Phys. 72, 066501 (2009)CrossRefGoogle Scholar
  100. 100.
    M. Itoh, R. Wang, Quantum ferroelectricity in SrTiO\(_3\) induced by oxygen isotope exchange. Appl. Phys. Lett. 76, 221 (2000)CrossRefGoogle Scholar
  101. 101.
    S.E. Rowley, L.J. Spalek, R.P. Smith, M.P.M. Dean, M. Itoh, J.F. Scott, G.G. Lonzarich, S.S. Saxena, Ferroelectric quantum criticality. Nat. Phys. 10, 367–372 (2014)CrossRefGoogle Scholar
  102. 102.
    J.T. Devreese, S.N. Klimin, J.L.M. van Mechelen, D. van der Marel, Many-body large polaron optical conductivity in Nb:SrTiO\(_3\). Phys. Rev. B 81, 125119 (2010)CrossRefGoogle Scholar
  103. 103.
    Y.J. Chang, A. Bostwick, Y.S. Kim, K. Horn, E. Rotenberg, Structure and correlation effects in semiconducting SrTiO\(_3\). Phys. Rev. B 81, 235109 (2010)CrossRefGoogle Scholar
  104. 104.
    W. Meevasana, X.J. Zhou, B. Moritz, C.-C. Chen, R.H. He, S.-I. Fujimori, D.H. Lu, S.-K. Mo, R.G. Moore, F. Baumberger, T.P. Devereaux, D. van der Marel, N. Nagaosa, J. Zaanen, Z.-X. Shen, Strong energy-momentum dispersion of phonon-dressed carriers in the lightly doped band insulator SrTiO\(_3\). New J. Phys. 12, 023004 (2010)CrossRefGoogle Scholar
  105. 105.
    A.S. Mishchenko, N.V. Prokofev, A. Sakamoto, B.V. Svistunov, Diagrammatic quantum Monte Carlo study of the Fröhlich polaron A. Phys. Rev. B 62, 6317–6336 (2000)CrossRefGoogle Scholar
  106. 106.
    A.D. Caviglia, S. Gariglio, N. Reyren, D. Jaccard, T. Schneider, M. Gabay, S. Thiel, G. Hammerl, J. Mannhart, J.-M. Triscone, Electric field control of the LaAlO\(_3\)/SrTiO\(_3\) interface ground state. Nature 456, 624–627 (2008)CrossRefGoogle Scholar
  107. 107.
    G. Verbist, F.M. Peeters, J.T. Devreese, Extended stability region for large bipolarons through interaction with multiple phonon branches. Ferroelectrics 130, 27–34 (1992)CrossRefGoogle Scholar
  108. 108.
    H. Boschker, C. Richter, E. Fillis-Tsirakis, C.W. Schneider, J. Mannhart, Electron–phonon coupling and the superconducting phase diagram of the LaAlO\(_3\)–SrTiO\(_3\) interface. Sci. Rep. 5, 12309 (2015)CrossRefGoogle Scholar
  109. 109.
    C. Cancellieri, A.S. Mishchenko, U. Aschauer, A. Filippetti, C. Faber, O.S. Barisic, V.A. Rogalev, T. Schmitt, N. Nagaosa, V.N. Strocov, Polaronic metal state at the LaAlO\(_3\)/SrTiO\(_3\) interface. Nat. Commun. 7, 10386 (2016)CrossRefGoogle Scholar
  110. 110.
    A. Fête, S. Gariglio, C. Berthod, D. Li, D. Stornaiuolo, M. Gabay, J.-M. Triscone, Large modulation of the Shubnikov-de Haas oscillations by the Rashba interaction at the LaAlO\(_3\)/SrTiO\(_3\) interface. New J. Phys. 16, 112002 (2014)CrossRefGoogle Scholar
  111. 111.
    A. Fête, Magnetotransport experiments at the LaAlO\(_3\)/SrTiO\(_3\) interface. Ph.D. thesis, University of Geneva, 24 Quai Ernest-Ansermet, Geneva, CH-1211, Switzerland (2014)Google Scholar
  112. 112.
    K.A. Brown, S. He, D.J. Eichelsdoerfer, M. Huang, I. Levy, H. Lee, S. Ryu, P. Irvin, J. Mendez-Arroyo, C.-B. Eom, C.A. Mirkin, J. Levy, Giant conductivity switching of LaAlO3/SrTiO3 heterointerfaces governed by surface protonation. Nat. Commun. 7, 10681 (2016)CrossRefGoogle Scholar
  113. 113.
    P. Scheiderer, F. Pfaff, J. Gabel, M. Kamp, M. Sing, R. Claessen, Surface-interface coupling in an oxide heterostructure: impact of adsorbates on LaAlO\(_3\)/SrTiO\(_3\). Phys. Rev. B 92, 195422 (2015)CrossRefGoogle Scholar
  114. 114.
    A. Tebano, E. Fabbri, D. Pergolesi, G. Balestrino, E. Traversa, Room-temperature giant persistent photoconductivity in SrTiO\(_3\)/LaAlO\(_3\) heterostructures. ACS Nano 6, 1278–1283 (2012)CrossRefGoogle Scholar
  115. 115.
    C. Cen, S. Thiel, G. Hammerl, C.W. Schneider, K.E. Andersen, C.S. Hellberg, J. Mannhart, J. Levy, Nanoscale control of an interfacial metal-insulator transition at room temperature. Nat. Mater. 7, 298–302 (2008)CrossRefGoogle Scholar
  116. 116.
    G. Cheng, M. Tomczyk, S. Lu, J.P. Veazey, M. Huang, P. Irvin, S. Ryu, H. Lee, C.-B. Eom, C.S. Hellberg, J. Levy, Electron pairing without superconductivity. Nature 521, 196–199 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Siobhan McKeown Walker
    • 1
  • Flavio Y. Bruno
    • 1
  • Felix Baumberger
    • 1
    • 2
  1. 1.University of GenevaGenevaSwitzerland
  2. 2.Swiss Light SourcePaul Scherrer InstitutVilligenSwitzerland

Personalised recommendations