Advertisement

The \(\text {LaAlO}_3\)/\(\text {SrTiO}_3\) Interface: The Origin of the 2D Electron Liquid and the Fabrication

  • S. Gariglio
  • C. Cancellieri
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 266)

Abstract

This chapter discusses the formation of the 2D electron liquid at the LAO/STO interface. The first part presents the theoretical proposals aimed at explaining the origin of the charge at the interface. The second part focuses on the importance of the growth techniques and parameters like temperature, oxygen pressure, post-deposition annealing and their influence on the electronic transport properties.

References

  1. 1.
    K. Müller, H. Burkard, SrTiO\(_3\): An intrinsic quantum paraelectric below 4 K. Phys. Rev. B 19, 3593 (1979).  https://doi.org/10.1103/PhysRevB.19.3593
  2. 2.
    D. Bäuerle, D. Wagner, M. Wöhlecke, B. Dorner, H. Kraxenberger, Soft modes in semiconducting SrTiO\(_3\): II. The ferroelectric mode. Zeitschrift für Physik B Conden. Mat. 38, 335 (1980).  https://doi.org/10.1007/BF01315325
  3. 3.
    M. Itoh, R. Wang, Y. Inaguma, T. Yamaguchi, Y.J. Shan, T. Nakamura, Ferroelectricity Induced by Oxygen Isotope Exchange in Strontium Titanate Perovskite. Phys. Rev. Lett. 82, 3540–3543 (1999).  https://doi.org/10.1103/PhysRevLett.82.3540
  4. 4.
    S.E. Rowley, L.J. Spalek, R.P. Smith, M.P.M. Dean, M. Itoh, J.F. Scott, G.G. Lonzarich, S.S. Saxena, Ferroelectric quantum criticality. Nat. Phys. 10, 367 (2014).  https://doi.org/10.1038/nphys2924
  5. 5.
    A. Spinelli, M.A. Torija, C. Liu, C. Jan, C. Leighton, Electronic transport in doped SrTiO\(_3\) : Conduction mechanisms and potential applications. Phys. Rev. B 81, 155110 (2010).  https://doi.org/10.1103/PhysRevB.81.155110
  6. 6.
    J.F. Schooley, W.R. Hosler, M.L. Cohen, Superconductivity in semiconducting SrTiO\(_3\). Phys. Rev. Lett. 12, 474 (1964). https://doi.org/10.1103/PhysRevLett.12.474
  7. 7.
    C.S. Koonce, M.L. Cohen, J.F. Schooley, W.R. Hosler, E.R. Pfeiffer, Superconducting transition temperatures of semiconducting SrTiO\(_3\). Phys. Rev. 163, 380 (1967). https://doi.org/10.1103/PhysRev.163.380
  8. 8.
    A. Verma, A.P. Kajdos, T.A. Cain, S. Stemmer, D. Jena, Intrinsic mobility limiting mechanisms in lanthanum-doped Strontium Titanate. Phys. Rev. Lett. 112, 216601 (2014).  https://doi.org/10.1103/PhysRevLett.112.216601
  9. 9.
    M. Kawasaki, K. Takahashi, T. Maeda, R. Tsuchiya, M. Shinohara, O. Ishiyama, T. Yonezawa, M. Yoshimoto, H. Koinuma, Atomic control of the SrTiO\(_3\) crystal surface. Science 266, 1540 (1994).  https://doi.org/10.1126/science.266.5190.1540
  10. 10.
    G. Koster, B.L. Kropman, G.J.H.M. Rijnders, D.H.A. Blank, H. Rogalla, Quasi-ideal strontium titanate crystal surfaces through formation of strontium hydroxide. Appl. Phys. Lett. 73, 2920 (1998).  https://doi.org/10.1063/1.122630
  11. 11.
    A. Ohtomo and H. Y. Hwang. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423 (2004). http://doi.org/10.1038/nature02308
  12. 12.
    J. Nishimura, A. Ohtomo, A. Ohkubo, Y. Murakami, and M. Kawasaki. Controlled Carrier Generation at a Polarity-Discontinued Perovskite Heterointerface. Jpn. J. Appl. Phys. 43, L1032 (2004). https://doi.org/10.1143/JJAP.43.L1032
  13. 13.
    W. Harrison, E. Kraut, J. Waldrop, and R. Grant. Polar heterojunction interfaces. Phys. Rev. B 18, 4402 (1978).https://doi.org/10.1103/PhysRevB.18.4402
  14. 14.
    C. Cantoni, J. Gazquez, F. Miletto Granozio, M. P. Oxley, M. Varela, A. R. Lupini, S. J. Pennycook, C. Aruta, U. Scotti di Uccio, P. Perna, and D. Maccariello. Electron Transfer and Ionic Displacements at the Origin of the 2D Electron Gas at the LAO/STO Interface: Direct Measurements with Atomic-Column Spatial Resolution. Adv. Mater. 24, 3952 (2012). https://doi.org/10.1002/adma.201200667
  15. 15.
    N. Nakagawa, H. Y. Hwang, and D. A. Muller. Why some interfaces cannot be sharp. Nat. Mater. 5, 204 (2006). https://doi.org/10.1038/nmat1569
  16. 16.
    P. Willmott, S. Pauli, R. Herger, C. Schlepütz, D. Martoccia, B. Patterson, B. Delley, R. Clarke, D. Kumah, C. Cionca, Y. Yacoby, Structural basis for the conducting interface between LaAlO\(_3\) and SrTio\(_3\). Phys. Rev. Lett. 99, 155502 (2007).  https://doi.org/10.1103/PhysRevLett.99.155502
  17. 17.
    M. Salluzzo, S. Gariglio, D. Stornaiuolo, V. Sessi, S. Rusponi, C. Piamonteze, G.M. De Luca, M. Minola, D. Marré, A. Gadaleta, H. Brune, F. Nolting, N.B. Brookes, G. Ghiringhelli, Origin of interface magnetism in BiMnO\(_3\)/SrTiO\(_3\) and LaAlO\(_3\)/SrTiO\(_3\) heterostructures. Phys. Rev. Lett. 111, 087204 (2013).  https://doi.org/10.1103/PhysRevLett.111.087204
  18. 18.
    M. Stengel, D. Vanderbilt, Berry-phase theory of polar discontinuities at oxide-oxide interfaces. Phys. Rev. B 80, 241103 (2009).  https://doi.org/10.1103/PhysRevB.80.241103
  19. 19.
    Z. Popović, S. Satpathy, R. Martin, Origin of the two-dimensional electron gas carrier density at the LaAlO\(_3\) on SrTiO\(_3\) Interface. Phys. Rev. Lett. 101, 256801 (2008).  https://doi.org/10.1103/PhysRevLett.101.256801
  20. 20.
    R. Pentcheva, W.E. Pickett, Electronic phenomena at complex oxide interfaces: insights from first principles. J. Phys. Condens. Mater. 22, 043001 (2010).  https://doi.org/10.1088/0953-8984/22/4/043001
  21. 21.
    P. Delugas, A. Filippetti, V. Fiorentini, D.I. Bilc, D. Fontaine, Ph. Ghosez, Spontaneous 2-Dimensional carrier confinement at the n-Type SrTiO\(_3\)/LaAlO\(_3\) interface. Phys. Rev. Lett. 106, 166807 (2011).  https://doi.org/10.1103/PhysRevLett.106.166807
  22. 22.
    S. Thiel, G. Hammerl, A. Schmehl, C.W. Schneider, J. Mannhart, Tunable quasi-two-dimensional electron gases in oxide heterostructures. Science 313, 1942 (2006).  https://doi.org/10.1126/science.1131091
  23. 23.
    C. Cen, S. Thiel, G. Hammerl, C.W. Schneider, K.E. Andersen, C.S. Hellberg, J. Mannhart, J. Levy, Nanoscale control of an interfacial metal-insulator transition at room temperature. Nat. Mater. 7, 298 (2008).  https://doi.org/10.1038/nmat2136
  24. 24.
    Y. Xie, Y. Hikita, Ch. Bell, H.Y. Hwang, Control of electronic conduction at an oxide heterointerface using surface polar adsorbates. Nat. Commun. 2, 494 (2011).  https://doi.org/10.1038/ncomms1501
  25. 25.
    N.C. Bristowe, P.B. Littlewood, E. Artacho, Surface defects and conduction in polar oxide heterostructures. Phys. Rev. B 83, 205405 (2011).  https://doi.org/10.1103/PhysRevB.83.205405
  26. 26.
    L. Yu, A. Zunger, A polarity-induced defect mechanism for conductivity and magnetism at polarnonpolar oxide interfaces. Nat. Commun. 5, 5118 (2014).  https://doi.org/10.1038/ncomms6118
  27. 27.
    I.M. Dildar, M. Neklyudova, Q. Xu, H.W. Zandbergen, S. Harkema, D. Boltje, J. Aarts, Growing LaAlO\(_3\)/SrTio\(_3\) interfaces by sputter deposition. AIP Advances 5, 067156 (2015).  https://doi.org/10.1063/1.4923285
  28. 28.
    J.P. Podkaminer, T. Hernandez, M. Huang, S. Ryu, C.W. Bark, S.H. Baek, J.C. Frederick, T.H. Kim, K.H. Cho, J. Levy, M.S. Rzchowski, C.B. Eom, Creation of a two-dimensional electron gas and conductivity switching of nanowires at the LaAlO\(_3\)/SrTio\(_3\) interface grown by 90\(^\circ \) off-axis sputtering. Appl. Phys. Lett. 103, 071604 (2013).  https://doi.org/10.1063/1.4817921
  29. 29.
    I.M. Dildar, D.B. Boltje, M.H.S. Hesselberth, J. Aarts, Q. Xu, H.W. Zandbergen, S. Harkema, Non-conducting interfaces of LaAlO\(_3\)/SrTiO\(_3\) produced in sputter deposition: The role of stoichiometry. Appl. Phys. Lett.102, 121601 (2013).  https://doi.org/10.1063/1.4798828
  30. 30.
    L. Qiao, T. Droubay, T. Varga, M. Bowden, V. Shutthanandan, Z. Zhu, T.C. Kaspar, S. Chambers, Epitaxial growth, structure, and intermixing at the LaAlO\(_3\)/SrTiO\(_3\) interface as the film stoichiometry is varied. Phys. Rev. B 83, 085408 (2011).  https://doi.org/10.1103/PhysRevB.83.085408
  31. 31.
    J.W. Park, D.F. Bogorin, C. Cen, D.A. Felker, Y. Zhang, C.T. Nelson, C.W. Bark, C.M. Folkman, X.Q. Pan, M.S. Rzchowski, J. Levy, C.B. Eom, Creation of a two-dimensional electron gas at an oxide interface on silicon. Nat. Commun. 1, 94 (2010).  https://doi.org/10.1038/ncomms1096
  32. 32.
    C. Cancellieri, N. Reyren, S. Gariglio, A.D. Caviglia, A. Fłte, J.-M. Triscone, Influence of the growth conditions on the LaAlO\(_3\)/SrTiO\(_3\) interface electronic properties. EPL 91, 17004 (2010).  https://doi.org/10.1209/0295-5075/91/17004
  33. 33.
    R. Eason (ed), Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials. Wiley (2007).  https://doi.org/10.1002/0470052120
  34. 34.
    D.H.A. Blank, M. Dekkers, G. Rijnders, Pulsed laser deposition in Twente: from research tool towards industrial deposition. J. Phys. D. Appl. Phys. 47, 034006 (2014).  https://doi.org/10.1088/0022-3727/47/3/034006
  35. 35.
    G. Herranz, M. Basletic, M. Bibes, C. Carrétéro, E. Tafra, E. Jacquet, K. Bouzehouane, C. Deranlot, A. Hamzic, J.-M. Broto, A. Barthélémy, A. Fert, High Mobility in LaAlO\(_3\)/SrTiO\(_3\) Heterostructures: Origin, Dimensionality, and Perspectives. Phys. Rev. Lett. 98, 216803 (2007).  https://doi.org/10.1103/PhysRevLett.98.216803
  36. 36.
    A. Brinkman, M. Huijben, M. van Zalk, J. Huijben, U. Zeitler, J. C. Maan, W. G. van derWiel, G. Rijnders, D. H. A. Blank, H. Hilgenkamp, Magnetic effects at the interface between non-magnetic oxides. Nat. Mater. 6, 493 (2007).  https://doi.org/10.1038/nmat1931
  37. 37.
    W. Siemons, G. Koster, H. Yamamoto, W. A. Harrison, G. Lucovsky, T. H. Geballe, D. H. A. Blank, M. R. Beasley, Origin of Charge Density at LaAlO\(_3\) on SrTiO\(_3\) Heterointerfaces: Possibility of Intrinsic Doping. Phys. Rev. Lett. 98, 196802 (2007).  https://doi.org/10.1103/PhysRevLett.98.196802
  38. 38.
    M. Basletic, J.-L. Maurice, C. Carrétéro, G. Herranz, O. Copie, M. Bibes, E. Jacquet, K. Bouzehouane, S. Fusil, A. Barthélémy, Mapping the spatial distribution of charge carriers in LaAlO\(_3\)/SrTiO\(_3\) heterostructures. Nat. Mater. 7, 621 (2008).  https://doi.org/10.1038/nmat2223
  39. 39.
    A. Kalabukhov, R. Gunnarsson, J. Borjesson, E. Olsson, T. Claeson, D. Winkle, Effect of oxygen vacancies in the SrTiO\(_3\) substrate on the electrical properties of the LaAlO\(_3\)/SrTiO\(_3\) interface. Phys. Rev. B 75, 121404 (2007).  https://doi.org/10.1103/PhysRevB.75.121404
  40. 40.
    N. C. Plumb, M. Salluzzo, E. Razzoli, M. Månsson, M. Falub, J. Krempasky, C. E. Matt, J. Chang, M. Schulte, J. Braun, H. Ebert, J. Minár, B. Delley, K.-J. Zhou, T. Schmitt, M. Shi, J. Mesot, L. Patthey M. Radović, Mixed Dimensionality of Confined Conducting Electrons in the Surface Region of SrTiO\(_3\). Phys. Rev. Lett. 113, 086801 (2014).  https://doi.org/10.1103/PhysRevLett.113.086801
  41. 41.
    A. F. Santander-Syro, O. Copie, T. Kondo, F. Fortuna, S. Pailhès, R. Weht, X. G. Qiu, F. Bertran, A. Nicolaou, A. Taleb-Ibrahimi, P. Le Fèvre, G. Herranz, M. Bibes, N. Reyren, Y. Apertet, P. Lecoeur, A. Barthélémy, M. J. Rozenberg, Two-dimensional electron gas with universal subbands at the surface of SrTiO\(_3\). Nature 469, 189 (2011).  https://doi.org/10.1038/nature09720
  42. 42.
    W. Meevasana, P. D. C. King, R. H. He, S.-K. Mo, M. Hashimoto, A. Tamai, P. Songsiriritthigul, F. Baumberger Z.-X. Shen, Creation and control of a two-dimensional electron liquid at the bare SrTiO\(_3\) surface. Nat. Mater. 10, 114 (2011).  https://doi.org/10.1038/nmat2943
  43. 43.
    M. Huijben, A. Brinkman, G. Koster, G. Rijnders, H. Hilgenkamp, D. H. A. Blank, Structure-Property Relation of SrTiO\(_3\)/LaAlO\(_3\) Interfaces. Adv. Mater. 21, 1665 (2009).  https://doi.org/10.1002/adma.200801448
  44. 44.
    N. Reyren, S. Thiel, A. D. Caviglia, L. Fitting Kourkoutis, G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A.-S. Rüetschi, D. Jaccard, M. Gabay, D. A. Muller, J.-M. Triscone, J. Mannhart, Superconducting interfaces between insulating oxides. Science 317, 1196 (2007).  https://doi.org/10.1126/science.1146006
  45. 45.
    S. Gariglio, N. Reyren, A. D. Caviglia, J.-M. Triscone. Superconductivity at the LaAlO\(_3\)/SrTiO\(_3\) interface. J. Phys.: Condens. Matter 21, 164213 (2009).  https://doi.org/10.1088/0953-8984/21/16/164213
  46. 46.
    S. Thiel, C. Schneider, L. Kourkoutis, D. Muller, N. Reyren, A. Caviglia, S. Gariglio, J.-M. Triscone, J. Mannhart, Electron Scattering at Dislocations in LaAlO\(_3\)/SrTiO\(_3\) Interfaces. Phys. Rev. Lett. 102, 046809 (2009).  https://doi.org/10.1103/PhysRevLett.102.046809
  47. 47.
    T. Fix, F. Schoofs, Z. Bi, A. Chen, H. Wang, J. L. MacManus-Driscoll, M. G. Blamire, Influence of SrTiO\(_3\) substrate miscut angle on the transport properties of LaAlO\(_3\)/SrTiO\(_3\) interfaces. Appl. Phys. Lett. 99, 022103 (2011).  https://doi.org/10.1063/1.3609785
  48. 48.
    C. Bell, S. Harashima, Y. Hikita, H. Y. Hwang, Thickness dependence of the mobility at the LaAlO\(_3\)/SrTiO\(_3\) interface. Appl. Phys. Lett. 94, 222111 2009.  https://doi.org/10.1063/1.3149695
  49. 49.
    A. Fête, C. Cancellieri, D. Li, D. Stornaiuolo, A. D. Caviglia, S. Gariglio, J.-M. Triscone, Growth-induced electron mobility enhancement at the LaAlO\(_3\)/SrTiO\(_3\) interface. Appl. Phys. Lett. 106, 051604 (2015).  https://doi.org/10.1063/1.4907676
  50. 50.
    M. Ben Shalom, A. Ron, A. Palevski, Y. Dagan, Shubnikov-De Haas Oscillations in SrTiO\(_3\)/LaAlO\(_3\) Interface. Phys. Rev. Lett. 105, 206401 (2010).  https://doi.org/10.1103/PhysRevLett.105.206401
  51. 51.
    S. Lerer, M. Ben Shalom, G. Deutscher, and Y. Dagan. Low-temperature dependence of the thermomagnetic transport properties of the SrTiO3/LaAlO3 interface. Phys. Rev. B 84, 075423 (2011). https://doi.org/10.1103/PhysRevB.84.075423
  52. 52.
    W.-J. Son, E. Cho, B. Lee, J. Lee, S. Han, Density and spatial distribution of charge carriers in the intrinsic n-type LaAlO\(_3\)-SrTiO\(_3\) interface. Phys. Rev. B 79, 245411 (2009).  https://doi.org/10.1103/PhysRevB.79.245411
  53. 53.
    R. Pentcheva, W. E. Pickett. Charge localization or itineracy at LaAlO\(_3\)/SrTiO\(_3\) interface: hole polarons, oxygen vacancies, and mobile electrons. Phys. Rev. B 74, 035112 (2006).  https://doi.org/10.1103/PhysRevB.74.035112
  54. 54.
    H. K. Sato, C. Bell, Y. Hikita, H. Y. Hwang. Stoichiometry control of the electronic properties of the LaAlO\(_3\)/SrTiO\(_3\) heterointerface. Appl. Phys. Lett. 102, 251602 (2013).  https://doi.org/10.1063/1.4812353
  55. 55.
    C. Xu, S. Wicklein, A. Sambri, S. Amoruso, M. Moors, R. Dittmann. Impact of the interplay between nonstoichiometry and kinetic energy of the plume species on the growth mode of SrTiO\(_3\) thin films. J. Phys. D. Appl. Phys. 47, 034009 (2014).  https://doi.org/10.1088/0022-3727/47/3/034009
  56. 56.
    T. Ohnishi, M. Lippmaa, T. Yamamoto, S. Meguro, H. Koinuma. Improved stoichiometry and misfit control in perovskite thin film formation at a critical fluence by pulsed laser deposition. Appl. Phys. Lett. 87, 241919 (2005).  https://doi.org/10.1063/1.2146069
  57. 57.
    Y. Tokuda, S. Kobayashi, T. Ohnishi, T. Mizoguchi, N. Shibata, Y. Ikuhara, T. Yamamoto, Growth of Ruddlesden-Popper type faults in Sr-excess SrTiO\(_3\) homoepitaxial thin films by pulsed laser deposition. Appl. Phys. Lett. 99, 173109 (2011).  https://doi.org/10.1063/1.3656340
  58. 58.
    E. Breckenfeld, N. Bronn, J. Karthik, A. R. Damodaran, S. Lee, N. Mason, L. W. Martin. Effect of growth induced (non)stoichiometry on interfacial conductance in LaAlO\(_3\)/SrTiO\(_3\). Phys. Rev. Lett. 110, 196804 (2013).  https://doi.org/10.1103/PhysRevLett.110.196804
  59. 59.
    M. Golalikhani, Q. Y. Lei, G. Chen, J. E. Spanier, H. Ghassemi, C. L. Johnson, M. L. Taheri, X. X. Xi, Stoichiometry of LaAlO\(_3\) films grown on SrTiO\(_3\) by pulsed laser deposition. J. Appl. Phys. 114, 027008 (2013).  https://doi.org/10.1063/1.4811821
  60. 60.
    M. P. Warusawithana, C. Richter, J. A. Mundy, P. Roy, J. Ludwig, S. Paetel, T. Heeg, A. A. Pawlicki, L. F. Kourkoutis, M. Zheng, M. Lee, B. Mulcahy, W. Zander, Y. Zhu, J. Schubert, J. N. Eckstein, D. A. Muller, C. Stephen Hellberg, J. Mannhart, D. G. Schlom. LaAlO\(_3\) stoichiometry is key to electron liquid formation at LaAlO\(_3\)/SrTiO\(_3\) interfaces. Nat. Commun. 4, 2351 (2013).  https://doi.org/10.1038/ncomms3351
  61. 61.
    K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 47, 1272–1276 (2011).  https://doi.org/10.1107/S0021889811038970

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Quantum Matter PhysicsUniversity of GenevaGenève 4Switzerland
  2. 2.Empa, Laboratory for Joining technologies and corrosionDübendorfSwitzerland

Personalised recommendations