Advertisement

Introduction: Interfaces as an Object of Photoemission Spectroscopy

  • C. Cancellieri
  • Vladimir N. Strocov
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 266)

Abstract

In this short introductory chapter, basic concepts of photoemission techniques will be given. In particular, the importance of some parameters like probing depth, energy and momentum resolution will be tackled by comparing photoemission experiments in different photon energy ranges from ultraviolet to soft and hard X-rays. Buried system i.e. interfaces could be probed only by using high energy photoemission. Apart from the band structure resolved in electron momentum k, the photoemission technique directly probes the electron spectral function encoding information about how particles are dressed by their interactions with the remainder of the system. Many body effects and electron correlation can in this way be accessed, in particular, the electron-phonon interaction affecting electron mobility. Finally, the instrumental development of photoemission is described in connection with its scientific perspective.

References

  1. 1.
    H. Bonzel, C. Kleint, On the history of photoemission. Prog. Surf. Sci. 48(1), 179 (1995),  https://doi.org/10.1016/0079-6816(95)93425-7, http://www.sciencedirect.com/science/article/pii/0079681695934257
  2. 2.
    F. Reinert, S. Hfner, Photoemission spectroscopy-from early days to recent applications. New J. Phys. 7(1), 97 (2005), http://stacks.iop.org/1367-2630/7/i=1/a=097
  3. 3.
    W.E. Spicer, C.N. Berglund, \(d\) band of copper. Phys. Rev. Lett. 12, 9–11 (1964),  https://doi.org/10.1103/PhysRevLett.12.9, http://link.aps.org/doi/10.1103/PhysRevLett.12.9
  4. 4.
    G.W. Gobeli, F.G. Allen, Direct and indirect excitation processes in photoelectric emission from silicon. Phys. Rev. 127, 141–149 (1962),  https://doi.org/10.1103/PhysRev.127.141, https://link.aps.org/doi/10.1103/PhysRev.127.141
  5. 5.
    D.I. Khomskii, Transition Metal Compounds, (Cambridge University Press, Cambridge 2014),  https://doi.org/10.1017/CBO9781139096782, https://www.cambridge.org/core/books/transition-metal-compounds/037907D3274F602D84CFECA02A493395
  6. 6.
    A. Ohtomo, H. Hwang, A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface (vol 427, pg 423, 2004). Nature 441(7089), 120 (2006),  https://doi.org/10.1038/nature04773
  7. 7.
    S. Hüfner, Photoelectron spectroscopy: principles and applications, in Advanced Texts in Physics. (Springer, 2003), https://books.google.ch/books?id=WfOw6jP9-oIC
  8. 8.
    A. Damascelli, Z. Hussain, Z.X. Shen, Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003),  https://doi.org/10.1103/RevModPhys.75.473, http://link.aps.org/doi/10.1103/RevModPhys.75.473
  9. 9.
    S. Kevan (ed.), Studies in Surface Science and Catalysis, vol. 74 (Elsevier 1992),  https://doi.org/10.1016/S0167-2991(08)61767-X, http://www.sciencedirect.com/science/article/pii/S016729910861767X
  10. 10.
    L. Perfetti, S. Mitrovic, M. Grioni, Fermi liquid and non-fermi liquid spectral lineshapes in low-dimensional solids. J. Electron Spectrosc. Relat. Phenom. 127(12), 77–84 (2002),  https://doi.org/10.1016/S0368-2048(02)00175-5, http://www.sciencedirect.com/science/article/pii/S0368204802001755. IWASES 5 Special Issue
  11. 11.
    G.D. Mahan, Many-particle physics [Elektronische Ressource], in Physics of Solids and Liquids (Springer, Boston, MA 2000), http://search.ebscohost.com/login.aspx?direct=true&AuthType=ip&db=cat04420a&AN=LIB.gbv744982855&site=eds-live
  12. 12.
    A.S. Alexandrov, J.T. Devreese, Advances in polaron physics, in Springer series in solid-state sciences, vol. 159 (Springer, Berlin 2010), http://search.ebscohost.com/login.aspx?direct=true&AuthType=ip&db=cat04420a&AN=LIB.swissbib305572687&site=eds-live
  13. 13.
    P.J. Feibelman, D.E. Eastman, Photoemission spectroscopy—correspondence between quantum theory and experimental phenomenology. Phys. Rev. B 10, 4932–4947 (1974),  https://doi.org/10.1103/PhysRevB.10.4932, http://link.aps.org/doi/10.1103/PhysRevB.10.4932
  14. 14.
    J. Hermanson, Final-state symmetry and polarization effects in angle-resolved photoemission spectroscopy. Solid State Communic. 22(1), 9–11 (1977),  https://doi.org/10.1016/0038-1098(77)90931-0, http://www.sciencedirect.com/science/article/pii/0038109877909310
  15. 15.
    V.N. Strocov, V.N. Petrov, J.H. Dil, Concept of a multichannel spin-resolving electron analyzer based on Mott scattering. J. Synchrotron Radiat. 22(3), 708–716 (2015),  https://doi.org/10.1107/S160057751500363X, https://dx.doi.org/10.1107/S160057751500363X
  16. 16.
    M.P. Seah, W.A. Dench, Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1(1), 2–11 (1979),  https://doi.org/10.1002/sia.740010103,  https://doi.org/10.1002/sia.740010103
  17. 17.
    V.N. Strocov, P. Blaha, H.I. Starnberg, M. Rohlfing, R. Claessen, J.M. Debever, J.M. Themlin, Three-dimensional unoccupied band structure of graphite: very-low-energy electron diffraction and band calculations. Phys. Rev. B 61, 4994–5001 (2000),  https://doi.org/10.1103/PhysRevB.61.4994, http://link.aps.org/doi/10.1103/PhysRevB.61.4994
  18. 18.
    V. Strocov, Intrinsic accuracy in 3-dimensional photoemission band mapping. J. Electron Spectrosc. Relat. Phenom. 130(1–3), 65–78 (2003).  https://doi.org/10.1016/S0368-2048(03)00054-9. http://www.sciencedirect.com/science/article/pii/S0368204803000549
  19. 19.
    V.N. Strocov, T. Schmitt, U. Flechsig, T. Schmidt, A. Imhof, Q. Chen, J. Raabe, R. Betemps, D. Zimoch, J. Krempasky, X. Wang, M. Grioni, A. Piazzalunga, L. Patthey, High-resolution soft X-ray beamline adress at the swiss light source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies. J. Synch. Rad. 17(5), 631–643 (2010).  https://doi.org/10.1107/S0909049510019862
  20. 20.
    S. Suga, A. Sekiyama, High energy photoelectron spectroscopy of correlated electron systems and recoil effects in photoelectron emission. European Phys. J. Spec. Top. 169(1), 227–235 (2009),  https://doi.org/10.1140/epjst/e2009-00997-4, https://dx.doi.org/10.1140/epjst/e2009-00997-4
  21. 21.
    M. Kobayashi, I. Muneta, T. Schmitt, L. Patthey, S. Ohya, M. Tanaka, M. Oshima, V.N. Strocov, Digging up bulk band dispersion buried under a passivation layer. Appl. Phys. Lett. 101(24), 242103 (2012),  https://doi.org/10.1063/1.4770289, http://aip.scitation.org/doi/abs/10.1063/1.4770289
  22. 22.
    M. Kobayashi, I. Muneta, Y. Takeda, Y. Harada, A. Fujimori, J. Krempaský, T. Schmitt, S. Ohya, M. Tanaka, M. Oshima, V.N. Strocov, Unveiling the impurity band induced ferromagnetism in the magnetic semiconductor (Ga, Mn)As. Phys. Rev. B 89, 205204 (2014),  https://doi.org/10.1103/PhysRevB.89.205204, http://link.aps.org/doi/10.1103/PhysRevB.89.205204
  23. 23.
    C. Cancellieri, M.L. Reinle-Schmitt, M. Kobayashi, V.N. Strocov, P.R. Willmott, D. Fontaine, P. Ghosez, A. Filippetti, P. Delugas, V. Fiorentini, Doping-dependent band structure of LaAlO\({}_{3}\)/SrTiO\({}_{3}\) interfaces by soft X-ray polarization-controlled resonant angle-resolved photoemission. Phys. Rev. B 89, 121412 (2014).  https://doi.org/10.1103/PhysRevB.89.121412, http://link.aps.org/doi/10.1103/PhysRevB.89.121412
  24. 24.
    S.L. Molodtsov, M. Richter, S. Danzenbächer, S. Wieling, L. Steinbeck, C. Laubschat, Angle-resolved resonant photoemission as a probe of spatial localization and character of electron states. Phys. Rev. Lett. 78, 142–145 (1997),  https://doi.org/10.1103/PhysRevLett.78.142, http://link.aps.org/doi/10.1103/PhysRevLett.78.142
  25. 25.
    P. Willmott, An introduction to synchrotron radiation [Elektronische Daten]: techniques and applications. (Wiley, Chichester, 2011), http://search.ebscohost.com/login.aspx?direct=true&AuthType=ip&db=cat04420a&AN=LIB.swissbib12226536X&site=eds-live
  26. 26.
    J. Yeh, I. Lindau, Atomic subshell photoionization cross sections and asymmetry parameters: 1 \(\le \) z \(\le \) 103. At. Data Nucl. Data Tables 32(1), 1–155 (1985),  https://doi.org/10.1016/0092-640X(85)90016-6, http://www.sciencedirect.com/science/article/pii/0092640X85900166
  27. 27.
    N. Mårtensson, P. Baltzer, P. Brühwiler, J.O. Forsell, A. Nilsson, A. Stenborg, B. Wannberg, A very high resolution electron spectrometer. J. Electron Spectrosc. Relat. Phenom. 70(2), 117–128 (1994),  https://doi.org/10.1016/0368-2048(94)02224-N, http://www.sciencedirect.com/science/article/pii/036820489402224N
  28. 28.
    S. Suga, C. Tusche, Photoelectron spectroscopy in a wide h region from 6 ev to 8 kev with full momentum and spin resolution. J. Electron Spectrosc. Relat. Phenom. 200, 119–142 (2015),  https://doi.org/10.1016/j.elspec.2015.04.019, http://www.sciencedirect.com/science/article/pii/S0368204815000912. Special Anniversary Issue: Volume 200
  29. 29.
    B. Wannberg, Electron optics development for photo-electron spectrometers. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 601(1–2), 182–194 (2009).  https://doi.org/10.1016/j.nima.2008.12.156. http://www.sciencedirect.com/science/article/pii/S0168900208020238. Special issue in honour of Prof. Kai Siegbahn
  30. 30.
    G. Öhrwall, P. Karlsson, M. Wirde, M. Lundqvist, P. Andersson, D. Ceolin, B. Wannberg, T. Kachel, H. Dürr, W. Eberhardt, S. Svensson, A new energy and angle resolving electron spectrometer—first results. J. Electron Spectrosc. Relat. Phenom. 183(1–3), 125–131 (2011),  https://doi.org/10.1016/j.elspec.2010.09.009, http://www.sciencedirect.com/science/article/pii/S0368204810002045. Electron Spectroscopy Kai Siegbahn Memorial Volume
  31. 31.
    J. Krempasky, S. Muff, F. Bisti, M. Fanciulli, H. Volfová, A.P. Weber, N. Pilet, P. Warnicke, H. Ebert, J. Braun, F. Bertran, V. Volobuev, J. Minár, G. Springholz, J.H. Dil, V. Strocov, Entanglement and manipulation of the magnetic and spin-orbit order in multiferroic Rashba semiconductors (2016), arXiv:1606.00241
  32. 32.
    N. Mannella, Measuring spins in photoemission experiments: old challenges and new opportunities. Synchrotron Radiat. News 27(2), 4–13 (2014),  https://doi.org/10.1080/08940886.2014.889548, https://dx.doi.org/10.1080/08940886.2014.889548
  33. 33.
    M. Kolbe, P. Lushchyk, B. Petereit, H.J. Elmers, G. Schönhense, A. Oelsner, C. Tusche, J. Kirschner, Highly efficient multichannel spin-polarization detection. Phys. Rev. Lett. 107, 207601 (2011),  https://doi.org/10.1103/PhysRevLett.107.207601, http://link.aps.org/doi/10.1103/PhysRevLett.107.207601

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Joining Technologies and CorrosionDübendorfSwitzerland
  2. 2.Paul Scherrer Institut, SLSVilligenSwitzerland

Personalised recommendations