Introduction: Interfaces as an Object of Photoemission Spectroscopy

Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 266)


In this short introductory chapter, basic concepts of photoemission techniques will be given. In particular, the importance of some parameters like probing depth, energy and momentum resolution will be tackled by comparing photoemission experiments in different photon energy ranges from ultraviolet to soft and hard X-rays. Buried system i.e. interfaces could be probed only by using high energy photoemission. Apart from the band structure resolved in electron momentum k, the photoemission technique directly probes the electron spectral function encoding information about how particles are dressed by their interactions with the remainder of the system. Many body effects and electron correlation can in this way be accessed, in particular, the electron-phonon interaction affecting electron mobility. Finally, the instrumental development of photoemission is described in connection with its scientific perspective.


  1. 1.
    H. Bonzel, C. Kleint, On the history of photoemission. Prog. Surf. Sci. 48(1), 179 (1995),,
  2. 2.
    F. Reinert, S. Hfner, Photoemission spectroscopy-from early days to recent applications. New J. Phys. 7(1), 97 (2005),
  3. 3.
    W.E. Spicer, C.N. Berglund, \(d\) band of copper. Phys. Rev. Lett. 12, 9–11 (1964),,
  4. 4.
    G.W. Gobeli, F.G. Allen, Direct and indirect excitation processes in photoelectric emission from silicon. Phys. Rev. 127, 141–149 (1962),,
  5. 5.
    D.I. Khomskii, Transition Metal Compounds, (Cambridge University Press, Cambridge 2014),,
  6. 6.
    A. Ohtomo, H. Hwang, A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface (vol 427, pg 423, 2004). Nature 441(7089), 120 (2006),
  7. 7.
    S. Hüfner, Photoelectron spectroscopy: principles and applications, in Advanced Texts in Physics. (Springer, 2003),
  8. 8.
    A. Damascelli, Z. Hussain, Z.X. Shen, Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003),,
  9. 9.
    S. Kevan (ed.), Studies in Surface Science and Catalysis, vol. 74 (Elsevier 1992),,
  10. 10.
    L. Perfetti, S. Mitrovic, M. Grioni, Fermi liquid and non-fermi liquid spectral lineshapes in low-dimensional solids. J. Electron Spectrosc. Relat. Phenom. 127(12), 77–84 (2002),, IWASES 5 Special Issue
  11. 11.
    G.D. Mahan, Many-particle physics [Elektronische Ressource], in Physics of Solids and Liquids (Springer, Boston, MA 2000),
  12. 12.
    A.S. Alexandrov, J.T. Devreese, Advances in polaron physics, in Springer series in solid-state sciences, vol. 159 (Springer, Berlin 2010),
  13. 13.
    P.J. Feibelman, D.E. Eastman, Photoemission spectroscopy—correspondence between quantum theory and experimental phenomenology. Phys. Rev. B 10, 4932–4947 (1974),,
  14. 14.
    J. Hermanson, Final-state symmetry and polarization effects in angle-resolved photoemission spectroscopy. Solid State Communic. 22(1), 9–11 (1977),,
  15. 15.
    V.N. Strocov, V.N. Petrov, J.H. Dil, Concept of a multichannel spin-resolving electron analyzer based on Mott scattering. J. Synchrotron Radiat. 22(3), 708–716 (2015),,
  16. 16.
    M.P. Seah, W.A. Dench, Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1(1), 2–11 (1979),,
  17. 17.
    V.N. Strocov, P. Blaha, H.I. Starnberg, M. Rohlfing, R. Claessen, J.M. Debever, J.M. Themlin, Three-dimensional unoccupied band structure of graphite: very-low-energy electron diffraction and band calculations. Phys. Rev. B 61, 4994–5001 (2000),,
  18. 18.
    V. Strocov, Intrinsic accuracy in 3-dimensional photoemission band mapping. J. Electron Spectrosc. Relat. Phenom. 130(1–3), 65–78 (2003).
  19. 19.
    V.N. Strocov, T. Schmitt, U. Flechsig, T. Schmidt, A. Imhof, Q. Chen, J. Raabe, R. Betemps, D. Zimoch, J. Krempasky, X. Wang, M. Grioni, A. Piazzalunga, L. Patthey, High-resolution soft X-ray beamline adress at the swiss light source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies. J. Synch. Rad. 17(5), 631–643 (2010).
  20. 20.
    S. Suga, A. Sekiyama, High energy photoelectron spectroscopy of correlated electron systems and recoil effects in photoelectron emission. European Phys. J. Spec. Top. 169(1), 227–235 (2009),,
  21. 21.
    M. Kobayashi, I. Muneta, T. Schmitt, L. Patthey, S. Ohya, M. Tanaka, M. Oshima, V.N. Strocov, Digging up bulk band dispersion buried under a passivation layer. Appl. Phys. Lett. 101(24), 242103 (2012),,
  22. 22.
    M. Kobayashi, I. Muneta, Y. Takeda, Y. Harada, A. Fujimori, J. Krempaský, T. Schmitt, S. Ohya, M. Tanaka, M. Oshima, V.N. Strocov, Unveiling the impurity band induced ferromagnetism in the magnetic semiconductor (Ga, Mn)As. Phys. Rev. B 89, 205204 (2014),,
  23. 23.
    C. Cancellieri, M.L. Reinle-Schmitt, M. Kobayashi, V.N. Strocov, P.R. Willmott, D. Fontaine, P. Ghosez, A. Filippetti, P. Delugas, V. Fiorentini, Doping-dependent band structure of LaAlO\({}_{3}\)/SrTiO\({}_{3}\) interfaces by soft X-ray polarization-controlled resonant angle-resolved photoemission. Phys. Rev. B 89, 121412 (2014).,
  24. 24.
    S.L. Molodtsov, M. Richter, S. Danzenbächer, S. Wieling, L. Steinbeck, C. Laubschat, Angle-resolved resonant photoemission as a probe of spatial localization and character of electron states. Phys. Rev. Lett. 78, 142–145 (1997),,
  25. 25.
    P. Willmott, An introduction to synchrotron radiation [Elektronische Daten]: techniques and applications. (Wiley, Chichester, 2011),
  26. 26.
    J. Yeh, I. Lindau, Atomic subshell photoionization cross sections and asymmetry parameters: 1 \(\le \) z \(\le \) 103. At. Data Nucl. Data Tables 32(1), 1–155 (1985),,
  27. 27.
    N. Mårtensson, P. Baltzer, P. Brühwiler, J.O. Forsell, A. Nilsson, A. Stenborg, B. Wannberg, A very high resolution electron spectrometer. J. Electron Spectrosc. Relat. Phenom. 70(2), 117–128 (1994),,
  28. 28.
    S. Suga, C. Tusche, Photoelectron spectroscopy in a wide h region from 6 ev to 8 kev with full momentum and spin resolution. J. Electron Spectrosc. Relat. Phenom. 200, 119–142 (2015),, Special Anniversary Issue: Volume 200
  29. 29.
    B. Wannberg, Electron optics development for photo-electron spectrometers. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 601(1–2), 182–194 (2009). Special issue in honour of Prof. Kai Siegbahn
  30. 30.
    G. Öhrwall, P. Karlsson, M. Wirde, M. Lundqvist, P. Andersson, D. Ceolin, B. Wannberg, T. Kachel, H. Dürr, W. Eberhardt, S. Svensson, A new energy and angle resolving electron spectrometer—first results. J. Electron Spectrosc. Relat. Phenom. 183(1–3), 125–131 (2011),, Electron Spectroscopy Kai Siegbahn Memorial Volume
  31. 31.
    J. Krempasky, S. Muff, F. Bisti, M. Fanciulli, H. Volfová, A.P. Weber, N. Pilet, P. Warnicke, H. Ebert, J. Braun, F. Bertran, V. Volobuev, J. Minár, G. Springholz, J.H. Dil, V. Strocov, Entanglement and manipulation of the magnetic and spin-orbit order in multiferroic Rashba semiconductors (2016), arXiv:1606.00241
  32. 32.
    N. Mannella, Measuring spins in photoemission experiments: old challenges and new opportunities. Synchrotron Radiat. News 27(2), 4–13 (2014),,
  33. 33.
    M. Kolbe, P. Lushchyk, B. Petereit, H.J. Elmers, G. Schönhense, A. Oelsner, C. Tusche, J. Kirschner, Highly efficient multichannel spin-polarization detection. Phys. Rev. Lett. 107, 207601 (2011),,

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Joining Technologies and CorrosionDübendorfSwitzerland
  2. 2.Paul Scherrer Institut, SLSVilligenSwitzerland

Personalised recommendations