Metabolic Models: From DNA to Physiology (and Back)

  • Marcio Argollo de MenezesEmail author
Part of the Computational Biology book series (COBO, volume 27)


Metabolic reconstructions constitute translations from genomic data to biochemical processes and serve as valuable tools to assess, along with mathematical models, the viability of organisms on different environments or the overproduction of industrially valuable metabolites following controlled manipulation of specific reaction rates. In the following, we review FBA, a constraint-based mathematical method which successfully predicts genome-wide metabolic fluxes, most notably the rate of accumulation of biomass precursors with stoichiometry determined by the cellular biomass composition. The practical implementation of the method on a synthetic metabolic model is offered as computer codes written for GNU-Octave, an open-source language with powerful numerical tools.


  1. 1.
    Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, Walter P. Molecular biology of the cell. 500 Tips. New York: Garland Science; 2014.Google Scholar
  2. 2.
    Bartell JA, Blazier AS, Yen P, Thgersen JC, Jelsbak L, Goldberg JB, Papin JA. Reconstruction of the metabolic network of Pseudomonas aeruginosa to interrogate virulence factor synthesis. Nat Commun. 2017;8:14631 EP. Article.CrossRefGoogle Scholar
  3. 3.
    Bordbar A, Monk JM, King ZA, Palsson BO. Constraint-based models predict metabolic and associated cellular functions. Nat Rev Genet. 2014;15:107 EP. Review Article.CrossRefGoogle Scholar
  4. 4.
    Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to algorithms. MIT electrical engineering and computer science series. Cambridge: MIT Press; 2001.Google Scholar
  5. 5.
    Dias O, Rocha M, Ferreira EC, Rocha I. Reconstructing genome-scale metabolic models with merlin. Nucleic Acids Res. 2015l43(8):3899–910. 25845595[pmid].CrossRefGoogle Scholar
  6. 6.
    Eaton JW, Bateman D, Hauberg S. GNU octave version 4.2.2 manual: a high-level interactive language for numerical computations.
  7. 7.
    Feist AM, Palsson BO. The growing scope of applications of genome-scale metabolic reconstructions using escherichia coli. Nat Biotechnol. 2008;26:659–67.CrossRefGoogle Scholar
  8. 8.
    Feist AM, Palsson BO. The biomass objective function. Curr Opin Microbiol. 2010;13(3):344–49. 20430689[pmid].CrossRefGoogle Scholar
  9. 9.
    Joyce AR, Palsson B. Predicting gene essentiality using genome-scale in silico models. In: Osterman AL, Gerdes SY, editors. Microbial gene essentiality: protocols and bioinformatics. Totowa: Humana Press; 2008. p. 433–57.CrossRefGoogle Scholar
  10. 10.
    Karr JR, Sanghvi JC, Macklin DN, Gutschow MV, Jacobs JM, Bolival B, Assad-Garcia N, Glass JI, Covert MW. A whole-cell computational model predicts phenotype from genotype. Cell. 2012;150:389–401.CrossRefGoogle Scholar
  11. 11.
    Kauffman SA. Autocatalytic sets of proteins. J Theor Biol. 1986;119(1):1–24.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kohanski MA, Dwyer DJ, Collins JJ. How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol. 2010;8(6):423–35. 20440275[pmid].CrossRefGoogle Scholar
  13. 13.
    Mahadevan R, Palsson B, Lovley DR. In situ to in silico and back: elucidating the physiology and ecology of Geobacter spp. using genome-scale modelling. Nat Rev Microbiol. 2011;9:222 EP, Erratum.CrossRefGoogle Scholar
  14. 14.
    Maranas CD, Zomorrodi AR. Optimization methods in metabolic networks. Hoboken: Wiley; 2016.CrossRefGoogle Scholar
  15. 15.
    Mendoza SN, Can PM, Contreras N, Ribbeck M, Agosn E. Genome-scale reconstruction of the metabolic network in oenococcus oeni to assess wine malolactic fermentation. Front Microbiol. 2017;8:534. 28424673[pmid].Google Scholar
  16. 16.
    Monk J, Nogales J, Palsson BO. Optimizing genome-scale network reconstructions. Nat Biotechnol. 2014;32:447 EP.CrossRefGoogle Scholar
  17. 17.
    Monod J. The growth of bacterial cultures. Annu Rev Microbiol. 1949;3(1):371–94.CrossRefGoogle Scholar
  18. 18.
    Monod J. Recherches sur la croissance des cultures bactériennes. Actualités scientifiques et industrielles. Hermann; 1958.Google Scholar
  19. 19.
    Neidhardt FC. Bacterial growth: constant obsession with dN/dt. J Bacteriol. 1999;181(24):7405–08. 1365[PII].Google Scholar
  20. 20.
    Niedenfhr S, Wiechert W, Katharina NH. How to measure metabolic fluxes: a taxonomic guide for 13c fluxomics. Curr Opin Biotechnol. 2015;34(Supplement C):82–90. Systems biology Nanobiotechnology.Google Scholar
  21. 21.
    Novick A, Szilard L. Description of the chemostat. Science. 1950;112(2920):715–6.CrossRefGoogle Scholar
  22. 22.
    O’Brien EJ, Monk JM, Palsson BO. Using genome-scale models to predict biological capabilities. Cell. 2015;161:971–87.CrossRefGoogle Scholar
  23. 23.
    Oberhardt MA, Palsson BO, Papin JA. Applications of genome-scale metabolic reconstructions. Mol Syst Biol. 2009;5:1–15.CrossRefGoogle Scholar
  24. 24.
    Oberhardt MA, Puchaka J, Martins dos Santos VAP, Papin JA. Reconciliation of genome-scale metabolic reconstructions for comparative systems analysis. PLoS Comput Biol. 2011;7(3):e1001116. 10-PLCB-RA-2544R2[PII].CrossRefGoogle Scholar
  25. 25.
    Orth JD, Thiele I, Palsson B. What is flux balance analysis? Nat Biotechnol. 2010;28:245.CrossRefGoogle Scholar
  26. 26.
    Palsson BØ. Systems biology: properties of reconstructed networks. Cambridge: Cambridge University Press; 2006.CrossRefGoogle Scholar
  27. 27.
    Peyraud R, Dubiella U, Barbacci A, Genin S, Raffaele S, Roby D. Advances on plantpathogen interactions from molecular toward systems biology perspectives. Plant J. 2017;90(4):720–37.CrossRefGoogle Scholar
  28. 28.
    Rajagopalan P, Kasif S, Murali TM. Systems biology characterization of engineered tissues. Annu Rev Biomed Eng. 2013;15(1):55–70.CrossRefGoogle Scholar
  29. 29.
    Santos FB, Vos WM, Teusink B. Towards metagenome-scale models for industrial applicationsthe case of lactic acid bacteria. Curr Opin Biotechnol. 2013;24:200–6.CrossRefGoogle Scholar
  30. 30.
    Schrödinger E. What is life? with mind and matter and autobiographical sketches. Cambridge paperback library. Cambridge: Cambridge University Press; 1992.CrossRefGoogle Scholar
  31. 31.
    Shakiba N, Zandstra PW. Engineering cell fitness: lessons for regenerative medicine. Curr Opin Biotechnol. 2017;47(Supplement C):7–15. Tissue, cell and pathway engineering.CrossRefGoogle Scholar
  32. 32.
    Smith CA, Neidhardt FC, Ingraham JL, Schaechter M. Physiology of the bacterial cell: a molecular approach. Sunderland: Sinauer Associates; 1990. p. 507; 43:95. ISBN: 0878936084; 2010;20:124–5.Google Scholar
  33. 33.
    Snitkin ES, Dudley AM, Janse DM, Wong K, Church GM, Segr D. Model-driven analysis of experimentally determined growth phenotypes for 465 yeast gene deletion mutants under 16 different conditions. Genome Biol. 2008;9(9):R140.CrossRefGoogle Scholar
  34. 34.
    Sousa FL, Hordijk W, Steel M, Martin WF. Autocatalytic sets in E. coli metabolism. J Syst Chem. 2015;6(1):4. 9[PII].Google Scholar
  35. 35.
    Thiele I, Palsson B. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc. 2010;5:93–121.CrossRefGoogle Scholar
  36. 36.
    Tobalina L, Pey J, Rezola A, Planes FJ. Assessment of FBA based gene essentiality analysis in cancer with a fast context-specific network reconstruction method. PLoS One. 2016;11(5):e0154583. PONE-D-15-35442[PII].CrossRefGoogle Scholar
  37. 37.
    Vazquez A. Overflow metabolism: from yeast to marathon runners. Saint Louis: Elsevier Science; 2017.Google Scholar
  38. 38.
    Vinaixa M, Rodrguez MA, Aivio S, Capellades J, Gmez J, Canyellas N, vis Stracker TH, Yanes O. Positional enrichment by proton analysis (pepa): a one-dimensional 1h-nmr approach for 13c stable isotope tracer studies in metabolomi cs. Angew Chem Int Ed. 2017;56(13):3531–5.CrossRefGoogle Scholar
  39. 39.
    Walsh JR, Schaeffer ML, Zhang P, Rhee SY, Dickerson JA, Sen TZ. The quality of metabolic pathway resources depends on initial enzymatic function assignments: a case for maize. BMC Syst Biol. 2016;10:129. 369[PII].Google Scholar
  40. 40.
    Xavier JC, Patil KR, Rocha I. Integration of biomass formulations of genome-scale metabolic models with experimental data reveals universally essential cofactors in prokaryotes. Metab Eng. 2017;39:200–8.CrossRefGoogle Scholar
  41. 41.
    Ziv N, Brandt NJ, Gresham D. The use of chemostats in microbial systems biology. J Vis Exp. 2013;14(80):50168. 50168[PII].Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de FísicaUniversidade Federal Fluminense (UFF)NiteróiBrazil

Personalised recommendations