Skip to main content

Metabolic Models: From DNA to Physiology (and Back)

  • Chapter
  • First Online:
Theoretical and Applied Aspects of Systems Biology

Part of the book series: Computational Biology ((COBO,volume 27))

  • 1048 Accesses

Abstract

Metabolic reconstructions constitute translations from genomic data to biochemical processes and serve as valuable tools to assess, along with mathematical models, the viability of organisms on different environments or the overproduction of industrially valuable metabolites following controlled manipulation of specific reaction rates. In the following, we review FBA, a constraint-based mathematical method which successfully predicts genome-wide metabolic fluxes, most notably the rate of accumulation of biomass precursors with stoichiometry determined by the cellular biomass composition. The practical implementation of the method on a synthetic metabolic model is offered as computer codes written for GNU-Octave, an open-source language with powerful numerical tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Check http://systemsbiology.ucsd.edu/InSilicoOrganisms/OtherOrganisms or https://www.ebi.ac.uk/biomodels-main/ for an updated list.

  2. 2.

    Many organisms can, for instance, generate ATP either by respiration, fermentation, or both processes simultaneously [37].

References

  1. Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, Walter P. Molecular biology of the cell. 500 Tips. New York: Garland Science; 2014.

    Google Scholar 

  2. Bartell JA, Blazier AS, Yen P, Thgersen JC, Jelsbak L, Goldberg JB, Papin JA. Reconstruction of the metabolic network of Pseudomonas aeruginosa to interrogate virulence factor synthesis. Nat Commun. 2017;8:14631 EP. Article.

    Article  Google Scholar 

  3. Bordbar A, Monk JM, King ZA, Palsson BO. Constraint-based models predict metabolic and associated cellular functions. Nat Rev Genet. 2014;15:107 EP. Review Article.

    Article  Google Scholar 

  4. Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to algorithms. MIT electrical engineering and computer science series. Cambridge: MIT Press; 2001.

    Google Scholar 

  5. Dias O, Rocha M, Ferreira EC, Rocha I. Reconstructing genome-scale metabolic models with merlin. Nucleic Acids Res. 2015l43(8):3899–910. 25845595[pmid].

    Article  Google Scholar 

  6. Eaton JW, Bateman D, Hauberg S. GNU octave version 4.2.2 manual: a high-level interactive language for numerical computations. https://www.gnu.org/software/octave/doc/v4.2.2.

  7. Feist AM, Palsson BO. The growing scope of applications of genome-scale metabolic reconstructions using escherichia coli. Nat Biotechnol. 2008;26:659–67.

    Article  Google Scholar 

  8. Feist AM, Palsson BO. The biomass objective function. Curr Opin Microbiol. 2010;13(3):344–49. 20430689[pmid].

    Article  Google Scholar 

  9. Joyce AR, Palsson B. Predicting gene essentiality using genome-scale in silico models. In: Osterman AL, Gerdes SY, editors. Microbial gene essentiality: protocols and bioinformatics. Totowa: Humana Press; 2008. p. 433–57.

    Chapter  Google Scholar 

  10. Karr JR, Sanghvi JC, Macklin DN, Gutschow MV, Jacobs JM, Bolival B, Assad-Garcia N, Glass JI, Covert MW. A whole-cell computational model predicts phenotype from genotype. Cell. 2012;150:389–401.

    Article  Google Scholar 

  11. Kauffman SA. Autocatalytic sets of proteins. J Theor Biol. 1986;119(1):1–24.

    Article  MathSciNet  Google Scholar 

  12. Kohanski MA, Dwyer DJ, Collins JJ. How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol. 2010;8(6):423–35. 20440275[pmid].

    Article  Google Scholar 

  13. Mahadevan R, Palsson B, Lovley DR. In situ to in silico and back: elucidating the physiology and ecology of Geobacter spp. using genome-scale modelling. Nat Rev Microbiol. 2011;9:222 EP, Erratum.

    Article  Google Scholar 

  14. Maranas CD, Zomorrodi AR. Optimization methods in metabolic networks. Hoboken: Wiley; 2016.

    Book  Google Scholar 

  15. Mendoza SN, Can PM, Contreras N, Ribbeck M, Agosn E. Genome-scale reconstruction of the metabolic network in oenococcus oeni to assess wine malolactic fermentation. Front Microbiol. 2017;8:534. 28424673[pmid].

    Google Scholar 

  16. Monk J, Nogales J, Palsson BO. Optimizing genome-scale network reconstructions. Nat Biotechnol. 2014;32:447 EP.

    Article  Google Scholar 

  17. Monod J. The growth of bacterial cultures. Annu Rev Microbiol. 1949;3(1):371–94.

    Article  Google Scholar 

  18. Monod J. Recherches sur la croissance des cultures bactériennes. Actualités scientifiques et industrielles. Hermann; 1958.

    Google Scholar 

  19. Neidhardt FC. Bacterial growth: constant obsession with dN/dt. J Bacteriol. 1999;181(24):7405–08. 1365[PII].

    Google Scholar 

  20. Niedenfhr S, Wiechert W, Katharina NH. How to measure metabolic fluxes: a taxonomic guide for 13c fluxomics. Curr Opin Biotechnol. 2015;34(Supplement C):82–90. Systems biology Nanobiotechnology.

    Google Scholar 

  21. Novick A, Szilard L. Description of the chemostat. Science. 1950;112(2920):715–6.

    Article  Google Scholar 

  22. O’Brien EJ, Monk JM, Palsson BO. Using genome-scale models to predict biological capabilities. Cell. 2015;161:971–87.

    Article  Google Scholar 

  23. Oberhardt MA, Palsson BO, Papin JA. Applications of genome-scale metabolic reconstructions. Mol Syst Biol. 2009;5:1–15.

    Article  Google Scholar 

  24. Oberhardt MA, Puchaka J, Martins dos Santos VAP, Papin JA. Reconciliation of genome-scale metabolic reconstructions for comparative systems analysis. PLoS Comput Biol. 2011;7(3):e1001116. 10-PLCB-RA-2544R2[PII].

    Article  Google Scholar 

  25. Orth JD, Thiele I, Palsson B. What is flux balance analysis? Nat Biotechnol. 2010;28:245.

    Article  Google Scholar 

  26. Palsson BØ. Systems biology: properties of reconstructed networks. Cambridge: Cambridge University Press; 2006.

    Book  Google Scholar 

  27. Peyraud R, Dubiella U, Barbacci A, Genin S, Raffaele S, Roby D. Advances on plantpathogen interactions from molecular toward systems biology perspectives. Plant J. 2017;90(4):720–37.

    Article  Google Scholar 

  28. Rajagopalan P, Kasif S, Murali TM. Systems biology characterization of engineered tissues. Annu Rev Biomed Eng. 2013;15(1):55–70.

    Article  Google Scholar 

  29. Santos FB, Vos WM, Teusink B. Towards metagenome-scale models for industrial applicationsthe case of lactic acid bacteria. Curr Opin Biotechnol. 2013;24:200–6.

    Article  Google Scholar 

  30. Schrödinger E. What is life? with mind and matter and autobiographical sketches. Cambridge paperback library. Cambridge: Cambridge University Press; 1992.

    Book  Google Scholar 

  31. Shakiba N, Zandstra PW. Engineering cell fitness: lessons for regenerative medicine. Curr Opin Biotechnol. 2017;47(Supplement C):7–15. Tissue, cell and pathway engineering.

    Article  Google Scholar 

  32. Smith CA, Neidhardt FC, Ingraham JL, Schaechter M. Physiology of the bacterial cell: a molecular approach. Sunderland: Sinauer Associates; 1990. p. 507; 43:95. ISBN: 0878936084; 2010;20:124–5.

    Google Scholar 

  33. Snitkin ES, Dudley AM, Janse DM, Wong K, Church GM, Segr D. Model-driven analysis of experimentally determined growth phenotypes for 465 yeast gene deletion mutants under 16 different conditions. Genome Biol. 2008;9(9):R140.

    Article  Google Scholar 

  34. Sousa FL, Hordijk W, Steel M, Martin WF. Autocatalytic sets in E. coli metabolism. J Syst Chem. 2015;6(1):4. 9[PII].

    Google Scholar 

  35. Thiele I, Palsson B. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc. 2010;5:93–121.

    Article  Google Scholar 

  36. Tobalina L, Pey J, Rezola A, Planes FJ. Assessment of FBA based gene essentiality analysis in cancer with a fast context-specific network reconstruction method. PLoS One. 2016;11(5):e0154583. PONE-D-15-35442[PII].

    Article  Google Scholar 

  37. Vazquez A. Overflow metabolism: from yeast to marathon runners. Saint Louis: Elsevier Science; 2017.

    Google Scholar 

  38. Vinaixa M, Rodrguez MA, Aivio S, Capellades J, Gmez J, Canyellas N, vis Stracker TH, Yanes O. Positional enrichment by proton analysis (pepa): a one-dimensional 1h-nmr approach for 13c stable isotope tracer studies in metabolomi cs. Angew Chem Int Ed. 2017;56(13):3531–5.

    Article  Google Scholar 

  39. Walsh JR, Schaeffer ML, Zhang P, Rhee SY, Dickerson JA, Sen TZ. The quality of metabolic pathway resources depends on initial enzymatic function assignments: a case for maize. BMC Syst Biol. 2016;10:129. 369[PII].

    Google Scholar 

  40. Xavier JC, Patil KR, Rocha I. Integration of biomass formulations of genome-scale metabolic models with experimental data reveals universally essential cofactors in prokaryotes. Metab Eng. 2017;39:200–8.

    Article  Google Scholar 

  41. Ziv N, Brandt NJ, Gresham D. The use of chemostats in microbial systems biology. J Vis Exp. 2013;14(80):50168. 50168[PII].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcio Argollo de Menezes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Menezes, M.A.d. (2018). Metabolic Models: From DNA to Physiology (and Back). In: Alves Barbosa da Silva, F., Carels, N., Paes Silva Junior, F. (eds) Theoretical and Applied Aspects of Systems Biology. Computational Biology, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-74974-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74974-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74973-0

  • Online ISBN: 978-3-319-74974-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics