Skip to main content

Abstract

With cellular reprogramming, it is possible to convert a cell from one phenotype to another without necessarily passing through a pluripotent state. This perspective is opening many interesting fields in the world of research and biomedical applications. This essay provides a concise description of the purpose of this technique, its evolution, mathematical models used, and applied methodologies. As examples, four areas in the biomedical field where cellular reprogramming can be applied with interesting perspectives are illustrated: diseases modeling, drug discovery, precision medicine, and regenerative medicine. Furthermore, the use of ordinary differential equations, Bayesian network, and Boolean network is described in these contexts. These strategies of mathematical modeling are the three main types that are applied in gene regulatory networks to analyze the dynamic interactions between their nodes. Ultimately, their application in disease research is discussed considering their benefits and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Waddington C. The strategy of the genes: a discussion of some aspects of theoretical biology. London: George Allen and Unwin; 1957. 262 pp

    Google Scholar 

  2. Waddington C. Organisers and genes. Cambridge: Cambridge University Press; 1940.

    Google Scholar 

  3. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  Google Scholar 

  4. Siminovitch L, McCulloch EA, Till JE. The distribution of colony-forming cells among spleen colonies. J Cell Comp Physiol. 1963;62(3):327–36.

    Article  Google Scholar 

  5. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981;78(12):7634–8.

    Article  Google Scholar 

  6. Waddington CH. Towards a theoretical biology. Nature. 1968;218(5141):525–7.

    Article  Google Scholar 

  7. Waddington CH. An introduction to modern genetics. New York: The Macmillan Company; 1939.

    Google Scholar 

  8. Huang S, Eichler G, Bar-yam Y, Ingber DE. Cell fates as high-dimensional attractor states of a complex gene regulatory network. Phys Rev Lett. 2005;94(12):128701.

    Article  Google Scholar 

  9. Huang S, Ernberg I, Kauffman S. Cancer attractors: a systems view of tumors from a gene network dynamics and developmental perspective. Semin Cell Dev Biol. 2009;20(7):869–76.

    Article  Google Scholar 

  10. Lang AH, Li H, Collins JJ, Mehta P. Epigenetic landscapes explain partially reprogrammed cells and identify key reprogramming genes. Morozov AV., editor. PLoS Comput Biol. 2014;10(8):e1003734.

    Article  Google Scholar 

  11. Seah Y, EL Farran C, Warrier T, Xu J, Loh Y-H. Induced pluripotency and gene editing in disease modelling: perspectives and challenges. Int J Mol Sci. 2015;16(12):28614–34.

    Article  Google Scholar 

  12. Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell. 2007;128(4):635–8.

    Article  Google Scholar 

  13. Ding S, Wang W. Recipes and mechanisms of cellular reprogramming: a case study on budding yeast Saccharomyces cerevisiae. BMC Syst Biol. 2011;5(1):50.

    Article  Google Scholar 

  14. del Sol A, Buckley NJ. Concise review: a population shift view of cellular reprogramming. Stem Cells. 2014;32(6):1367–72.

    Article  Google Scholar 

  15. Mall M, Wernig M. The novel tool of cell reprogramming for applications in molecular medicine. J Mol Med. 2017;95(7):695–703.

    Article  Google Scholar 

  16. Dezonne RS, Sartore RC, Nascimento JM, Saia-Cereda VM, Romão LF, Alves-Leon SV, et al. Derivation of functional human astrocytes from cerebral organoids. Sci Rep. 2017;7:45091.

    Article  Google Scholar 

  17. Kawser Hossain M, Abdal Dayem A, Han J, Kumar Saha S, Yang G-M, Choi HY, et al. Recent advances in disease modeling and drug discovery for diabetes mellitus using induced pluripotent stem cells. Int J Mol Sci. 2016;17(2):256.

    Article  Google Scholar 

  18. Hamazaki T, El Rouby N, Fredette NC, Santostefano KE, Terada N. Concise review: induced pluripotent stem cell research in the era of precision medicine. Stem Cells. 2017;35(3):545–50.

    Article  Google Scholar 

  19. Mason C, Dunnill P. A brief definition of regenerative medicine. Regen Med. 2008;3(1):1–5.

    Article  Google Scholar 

  20. Hemmi JJ, Mishra A, Hornsby PJ. Overcoming barriers to reprogramming and differentiation in nonhuman primate induced pluripotent stem cells. Primate Biol. 2017;4(2):153–62.

    Article  Google Scholar 

  21. Halley-Stott RP, Pasque V, Gurdon JB. Nuclear reprogramming. Development. 2013;140(12):2468–71.

    Article  Google Scholar 

  22. Takahashi K. Cellular reprogramming. Cold Spring Harb Perspect Biol. 2014;6(2):a018606.

    Article  Google Scholar 

  23. D’urso A, Brickner J. Mechanisms of epigenetic memory. Trends Genet. 2014;30(6):230–6.

    Article  Google Scholar 

  24. Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science. 2013;341(6146):651–4.

    Article  Google Scholar 

  25. Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science. 2008;322(5903):949–53.

    Article  Google Scholar 

  26. Byrne JA, Pedersen DA, Clepper LL, Nelson M, Sanger WG, Gokhale S, et al. Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature. 2007;450(7169): 497–502.

    Article  Google Scholar 

  27. Wakayama T, Tabar V, Rodriguez I, Perry AC, Studer L, Mombaerts P. Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science. 2001;292(5517):740–3.

    Article  Google Scholar 

  28. Yamanaka S, Blau HM. Nuclear reprogramming to a pluripotent state by three approaches. Nature. 2010;465(7299):704–12.

    Article  Google Scholar 

  29. Rackham OJL, Firas J, Fang H, Oates ME, Holmes ML, Knaupp AS, et al. A predictive computational framework for direct reprogramming between human cell types. Nat Genet. 2016;48(3):331–5.

    Article  Google Scholar 

  30. Forrest ARR, Kawaji H, Rehli M, Kenneth Baillie J, de Hoon MJL, Haberle V, et al. A promoter-level mammalian expression atlas. Nature. 2014;507(7493):462–70.

    Article  Google Scholar 

  31. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2012;41(D1):D808–15.

    Article  Google Scholar 

  32. Suzuki H, Forrest ARR, van Nimwegen E, Daub CO, Balwierz PJ, Irvine KM, et al. The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat Genet. 2009;41(5):553–62.

    Article  Google Scholar 

  33. Cao J, Qi X, Zhao H. Modeling gene regulation networks using ordinary differential equations. Methods Mol Biol. 2012:185–97.

    Google Scholar 

  34. Mitra MK, Taylor PR, Hutchison CJ, McLeish TCB, Chakrabarti B. Delayed self-regulation and time-dependent chemical drive leads to novel states in epigenetic landscapes. J R Soc Interface. 2014;11(100):20140706.

    Article  Google Scholar 

  35. Friedman N, Linial M, Nachman I, Pe’er D. Using Bayesian networks to analyze expression data. J Comput Biol. 2000;74(3):601–20.

    Article  Google Scholar 

  36. Chang R, Shoemaker R, Wang W. Systematic search for recipes to generate induced pluripotent stem cells. PLOS Comput Biol Publ Libr of Sci. 2011;7(12):e1002300.

    Article  MathSciNet  Google Scholar 

  37. Xiao Y. A tutorial on analysis and simulation of Boolean gene regulatory network models. Curr Genomics. 2009;10(7):511–25.

    Article  Google Scholar 

  38. Crespo I, Perumal TM, Jurkowski W, del Sol A. Detecting cellular reprogramming determinants by differential stability analysis of gene regulatory networks. BMC Syst Biol. 2013;7(1):140.

    Article  Google Scholar 

  39. Lukk M, Kapushesky M, Nikkilä J, Parkinson H, Goncalves A, Huber W, et al. A global map of human gene expression. Nat Biotechnol. 2010;28(4):322–4.

    Article  Google Scholar 

  40. Crespo I, del Sol A. A general strategy for cellular reprogramming: the importance of transcription factor cross-repression. Stem Cells. 2013;31(10):2127–35.

    Article  Google Scholar 

  41. Crespo I, Krishna A, Le Bechec A, del Sol A. Predicting missing expression values in gene regulatory networks using a discrete logic modeling optimization guided by network stable states. Nucleic Acids Res. 2013;41(1):e8.

    Article  Google Scholar 

  42. Cornelius SP, Kath WL, Motter AE. Realistic control of network dynamics. Nat Commun Nat Publ Group. 2013;4:1942.

    Article  Google Scholar 

  43. Zickenrott S, Angarica VE, Upadhyaya BB, Sol A. Prediction of disease – gene – drug relationships following a differential network analysis. Cell Death Dis Nat Publ Group. 2016;7(1):e2040–12.

    Article  Google Scholar 

  44. Tabernero J, Shapiro GI, LoRusso PM, Cervantes A, Schwartz GK, Weiss GJ, et al. First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov. 2013;3(4):406–17.

    Article  Google Scholar 

  45. Jonsson PF, Bates PA. Global topological features of cancer proteins in the human interactome. Bioinformatics. 2006;22(18):2291–7.

    Article  Google Scholar 

  46. Phillips MA, Burrows JN, Manyando C, van Huijsduijnen RH, Van Voorhis WC, TNC W. Malaria. Nat Rev Dis Prim. Macmillan Publishers Limited. 2017;3:17050.

    Article  Google Scholar 

Download references

Acknowledgment

This study was supported by fellowships from CAPES to D.S. and from the Oswaldo Cruz Institute (https://pgbcs.ioc.fiocruz.br/) to A.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabricio Alves Barbosa da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sgariglia, D., Conforte, A.J., de Carvalho, L.A.V., Carels, N., da Silva, F.A.B. (2018). Cellular Reprogramming. In: Alves Barbosa da Silva, F., Carels, N., Paes Silva Junior, F. (eds) Theoretical and Applied Aspects of Systems Biology. Computational Biology, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-74974-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74974-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74973-0

  • Online ISBN: 978-3-319-74974-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics