Skip to main content

Bio-modeling Using Petri Nets: A Computational Approach

  • Chapter
  • First Online:

Part of the book series: Computational Biology ((COBO,volume 27))

Abstract

Petri nets have been widely used to model and analyze biological system. The formalism comprises different types of paradigms, integrating qualitative and quantitative (i.e., stochastic, continuous, or hybrid) modeling and analysis techniques. In this chapter, we describe the Petri net formalism and a broad view of its structure and characteristics applied in the modeling process in systems biology. We present the different net classes of the formalism, its color extension, and model analysis. The objective is to provide a discussion on the Petri net formalism as basis for research in computational biology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kitano H. Systems biology: a brief overview. Science. 2002;295:1662–4.

    Article  Google Scholar 

  2. Aderem A. Systems biology: its practice and challenges. Cell. 2005;121:511–3.

    Article  Google Scholar 

  3. Fisher J, Henzinger TA. Executable cell biology. Nat Biotechnol. 2007;25:1239–49.

    Article  Google Scholar 

  4. Hunt CA, Ropella GEP, Park S, Engelberg J. Dichotomies between computational and mathematical models. Nat Biotechnol. 2008;26:737–9.

    Article  Google Scholar 

  5. Cardelli L. Brane calculi-interactions of biological membranes. Proc C. 2005; 3082:257–78.

    Google Scholar 

  6. Pun G. A guide to membrane computing. Theor Comput Sci. 2002;287:73–100.

    Article  MathSciNet  Google Scholar 

  7. Calzone L, Fages FF, Soliman S. BIOCHAM: an environment for modeling biological systems and formalizing experimental knowledge. Bioinformatics. 2006;22:1805–7.

    Article  Google Scholar 

  8. Barbuti R, Caravagna G, Maggiolo-Schettini A, Milazzo P, Pardini G. The calculus of looping sequences. In: Proceedings of the Formal methods for the design of computer, communication, and software systems 8th international conference on Formal methods for computational systems biology. Berlin: Springer-Verlag; 2008. p. 387–423.

    Google Scholar 

  9. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

    Article  Google Scholar 

  10. Breitkreutz B-J, Stark C, Tyers M. Osprey: a network visualization system. Genome Biol. 2002;3:1–6.

    Google Scholar 

  11. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics. 2003;19:524–31.

    Article  Google Scholar 

  12. Hucka M. Systems biology markup language (SBML). In: Encyclopedia of systems biology. New York: Springer New York; 2013. p. 2057–63.

    Chapter  Google Scholar 

  13. Garvey TD, Lincoln P, Pedersen CJ, Martin D, Johnson M. BioSPICE: access to the most current computational tools for biologists. Omi A J Integr Biol. 2003;7:411–20.

    Article  Google Scholar 

  14. Danos V, Krivine J. Formal molecular biology done in CCS-R. Electron Notes Theor Comput Sci. Elsevier. 2007;180:31–49.

    Article  Google Scholar 

  15. Regev A, Silverman W, Shapiro E. Representation and simulation of biochemical processes using the pi-calculus process algebra. Pac Symp Biocomput. 2001;6:459–70.

    Google Scholar 

  16. Akman O, Ciocchetta F, Degasperi A, Guerriero M. Modelling biological clocks with bio-PEPA: stochasticity and robustness for the Neurospora crassa circadian network. In: Degano P, Gorrieri R, editors. Computational methods in systems biology SE – 4. Berlin: Springer; 2009. p. 52–67.

    Chapter  Google Scholar 

  17. Ciocchetta F, Hillston J. Bio-PEPA: a framework for the modelling and analysis of biological systems. Theor Comput Sci. Elsevier Science Publishers Ltd. 2009;410:3065–84.

    Article  MathSciNet  Google Scholar 

  18. González PP, Cárdenas M, Camacho D, Franyuti A, Rosas O, Lagúnez-Otero J. Cellulat: an agent-based intracellular signalling model. Biosystems. 2003;68:171–85.

    Article  Google Scholar 

  19. Segovia-Juarez JL, Ganguli S, Kirschner D. Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent-based model. J Theor Biol. 2004;231:357–76.

    Article  MathSciNet  Google Scholar 

  20. Murata T. Petri nets: properties, analysis and applications. Proc IEEE. 1989;77:541–80.

    Article  Google Scholar 

  21. Reddy VN, Mavrovouniotis ML, Liebman MN. Petri net representations in metabolic pathways. In: Hunter L, Searls DB, Jude W. Shavlik, editors. Proceedings of the 1st international conference on intelligent systems for molecular biology. Menlo Park: AAAI Press; 1993. p. 328–36.

    Google Scholar 

  22. Heiner M, Gilbert D, Donaldson R. Petri nets for systems and synthetic biology. In: Bernardo M, Degano P, Zavattaro G, editors. Form methods computational systems biology, vol. 5016. Berlin/Heidelberg: Springer; 2008. p. 215–64.

    Chapter  Google Scholar 

  23. Jensen K. Coloured Petri nets : basic concepts, analysis methods and practical use. Berlin: Springer; 1997.

    Book  Google Scholar 

  24. Petri CA. Kommunikation mit Automaten. Vol. Doktor. Fakultät Math Phys. 1962. p. 128.

    Google Scholar 

  25. Cordero F, Horváth A, Manini D, Napione L, De Pierro M, Pavan S, et al. Simplification of a complex signal transduction model using invariants and flow equivalent servers. Theor Comput Sci. 2011;412:6036–57.

    Article  MathSciNet  Google Scholar 

  26. Koch I, Junker BH, Heiner M. Application of Petri net theory for modelling and validation of the sucrose breakdown pathway in the potato tuber. Bioinformatics. 2005;21:1219–26.

    Article  Google Scholar 

  27. Blätke MA, Heiner M, Marwan W. Predicting phenotype from genotype through automatically composed Petri nets. In: Gilbert D, Heiner M, editors. Computational methods in systems biology. Lecture notes in computer science, vol. 7605. Berlin/Heidelberg: Springer; 2012. p. 87–106.

    Chapter  Google Scholar 

  28. Koch I, Reisig W, Schreiber F. In: Koch I, Reisig W, Schreiber F, editors. Modeling in systems biology: the Petri net approach. London: Springer-Verlag; 2011. p. 25.

    Chapter  Google Scholar 

  29. Peleg M, Rubin D, Altman RB. Using Petri net tools to study properties and dynamics of biological systems. J Am Med Inf Assoc. 2005;12:181–99.

    Article  Google Scholar 

  30. Hofestädt R. A Petri net application to model metabolic processes. Syst Anal Model Simul. 1994;16:113–22.

    MATH  Google Scholar 

  31. Albergante L, Timmis J, Beattie L, Kaye PM. A Petri net model of granulomatous inflammation: implications for IL-10 mediated control of Leishmania donovani infection. PLoS Comput Biol Public Libr Sci. 2013;9:e1003334.

    Article  Google Scholar 

  32. Gilbert D, Heiner M, Lehrack S. A unifying framework for modelling and analysing biochemical pathways using Petri nets. In: Calder M, Gilmore S, editors. Computational methods in systems biology. Berlin/Heidelberg: Springer; 2007. p. 200–16.

    Chapter  Google Scholar 

  33. Heiner M, Koch I, Will J. Model validation of biological pathways using Petri nets—demonstrated for apoptosis. Biosystems. 2004;75:15–28.

    Article  Google Scholar 

  34. Herajy M, Heiner M. Petri net-based collaborative simulation and steering of biochemical reaction networks. Fundam Informaticae. 2014;129:49–67.

    MathSciNet  MATH  Google Scholar 

  35. Wingender E. In: Wingender E, editor. Biological Petri nets. Amsterdam: IOS Press; 2011.

    Google Scholar 

  36. Doi A, Fujita S, Matsuno H, Nagasaki M, Miyano S. Constructing biological pathway models with hybrid functional Petri nets. In Silico Biol. 2004;4:271–91.

    Google Scholar 

  37. Chaouiya C, Remy E, Ruet P, Thieffry D. Qualitative modelling of genetic networks: from logical regulatory graphs to standard Petri nets. Appl Theory Petri Nets. 2004;2004:137–56.

    MathSciNet  MATH  Google Scholar 

  38. Chaouiya C. Petri net modelling of biological networks. Brief Bioinf. 2007;8:210–9.

    Article  Google Scholar 

  39. Matsuno H, Tanaka Y, Aoshima H, Doi A, Matsui M, Miyano S. Biopathways representation and simulation on hybrid functional Petri net. Stud Health Technol Inform. 2011;162:77–91.

    Google Scholar 

  40. Breitling R, Gilbert D, Heiner M, Orton R. A structured approach for the engineering of biochemical network models, illustrated for signalling pathways. Brief Bioinform. 2008;9: 404–21.

    Article  Google Scholar 

  41. Li C, Ge QW, Nakata M, Matsuno H, Miyano S. Modelling and simulation of signal transductions in an apoptosis pathway by using timed Petri nets. J Biosci. 2007;32:113–27.

    Article  Google Scholar 

  42. Hardy S, Robillard PN. Petri net-based method for the analysis of the dynamics of signal propagation in signaling pathways. Bioinformatics. 2008;24:209–17.

    Article  Google Scholar 

  43. Sackmann A, Heiner M, Koch I. Application of Petri net based analysis techniques to signal transduction pathways. BMC Bioinf. 2006;7:482.

    Article  Google Scholar 

  44. Kielbassa J, Bortfeldt R, Schuster S, Koch I. Modeling of the U1 snRNP assembly pathway in alternative splicing in human cells using Petri nets. Comput Biol Chem. 2009;33:46–61.

    Article  MathSciNet  Google Scholar 

  45. Carvalho RV, Kleijn J, Meijer AH, Verbeek FJ. Modeling innate immune response to early mycobacterium infection. Comput Math Methods Med. 2012;2012:790482.

    Article  Google Scholar 

  46. Carvalho RV, Kleijn J, Verbeek FJ. A multi-scale extensive Petri net model of the bacterial – macrophage interaction. In: Heiner M, editor. 5th International workshop on biological processes & Petri nets. Tunis: CEUR Workshop Proceedings; 2014. p. 15–29.

    Google Scholar 

  47. Carvalho R, van den Heuvel J, Kleijn J, Verbeek F. Coupling of Petri net models of the mycobacterial infection process and innate immune response. Comput Multidiscip Digit Publ Inst. 2015;3:150–76.

    Google Scholar 

  48. Heiner M, Gilbert D. How might Petri nets enhance your systems biology toolkit. In: Kristensen LM, Petrucci L, editors. Applications and theory of Petri nets. PETRI NETS 2011. Lecture notes in computer science, vol. 6709. Berlin/Heidelberg: Springer; 2011. p. 17–37.

    Google Scholar 

  49. Mura I, Csikász-Nagy A. Stochastic Petri net extension of a yeast cell cycle model. J Theor Biol. 2008;254:850–60.

    Article  Google Scholar 

  50. David R, Alla H. On hybrid Petri nets. Discrete event dynamic systems: theory and applications, vol. 11. Boston: Kluwer Academic Publishers; 2001. p. 9–40.

    MATH  Google Scholar 

  51. Jensen K. Coloured Petri nets and the invariant-method. Theor Comput Sci. Elsevier. 1981;14:317–36.

    Article  MathSciNet  Google Scholar 

  52. Jensen K. Coloured Petri nets. Brauer W, Reisig W, Rozenberg G. Theor Comput Sci. Springer Berlin Heidelberg; 2009; 254:248–299.

    Chapter  Google Scholar 

  53. Heiner M, Herajy M, Liu F, Rohr C, Schwarick M. Snoopy – a unifying Petri net tool. Haddad Serge, Pomello Lucia. Lect Notes Comput Sci. Hamburg: Springer; 2012; 7347:398–407.

    Google Scholar 

  54. Blätke MA, Dittrich A, Rohr C, Heiner M, Schaper F, Marwan W. JAK/STAT signalling – an executable model assembled from molecule-centred modules demonstrating a module-oriented database concept for systems and synthetic biology. Mol BioSyst. 2013;9:1290.

    Article  Google Scholar 

  55. Gilbert D, Heiner M. From Petri nets to differential equations – an integrative approach for biochemical network analysis. In: Donatelli S, Thiagarajan PS, editors. Petri nets and other models of concurrency – ICATPN 2006, Lecture Notes Computer Science, vol. 4024. Berlin: Springer; 2006. p. 181–200.

    Chapter  Google Scholar 

  56. Lotka AJ. Undamped oscillations derived from the law of mass action. J Am Chem Soc. 1920;42:1595–9.

    Article  Google Scholar 

  57. Hitchcock S. Extinction probabilities in predator-prey models. J Appl Probab. 1986;23(1): 1–13.

    Article  MathSciNet  Google Scholar 

  58. Hofestädt R, Thelen S. Quantitative modeling of biochemical networks. In Silico Biol. 1998;1:39–53.

    Google Scholar 

  59. Symons FJW. Introduction to numerical Petri nets, a general graphical model of concurrent processing systems. Aust Telecommun Res. 1980;14:28–33.

    Google Scholar 

  60. Symons FJW. The description and definition of queueing systems by numerical Petri nets. Aust Telecommun Res. 1980;13:20–31.

    Google Scholar 

  61. Natkin S. Les Reseaux de Petri Stochastique et leur Application a l’Evaluation des Systèmes Informatiques. Tesis doctorales. CNAM, Paris; 1980.

    Google Scholar 

  62. Molloy MK. On the integration of delay and throughput measures in distributed processing models. Ph.D. Dissertation. University of California, Los Angeles. 1981.

    Google Scholar 

  63. Marsan MA. Stochastic Petri nets: an elementary introduction. In: Rozenberg G, editor. Advances in Petri Nets 1989. APN 1988. Lecture Notes in Computer Science, vol. 424. Berlin/Heidelberg: Springer; 1990. p. 1–29.

    Google Scholar 

  64. Heiner M, Lehrack S, Gilbert D, Marwan W. Extended stochastic Petri nets for model-based design of wetlab experiments. In: Priami C, Back RJ, Petre I, editors. Transactions on computational systems biology XI. Lecture notes in computer science, vol. 5750. Berlin/Heidelberg: Springer; 2009. p. 138–63.

    Google Scholar 

  65. Gillespie DT. Exact stochastic simulation of coupled chemical reactions. J Phys Chem Am Chem Soc. 1977;81:2340–61.

    Google Scholar 

  66. Alla H, David R. Continuous and hybrid Petri nets. J Circ Syst Comput. 1998;8:159–88.

    Article  MathSciNet  Google Scholar 

  67. Matsuno H, Nagasaki M, Miyano S. Hybrid Petri net based modeling for biological pathway simulation. Nat Comput. 2011;10:1099–120.

    Article  MathSciNet  Google Scholar 

  68. Kiehl TR, Mattheyses RM, Simmons MK. Hybrid simulation of cellular behavior. Bioinformatics. 2004;20:316–22.

    Article  Google Scholar 

  69. Marchetti L, Priami C, Thanh VH. HRSSA – efficient hybrid stochastic simulation for spatially homogeneous biochemical reaction networks. J Comput Phys. 2016;317:301–17.

    Article  MathSciNet  Google Scholar 

  70. Herajy M, Heiner M. Accelerated simulation of hybrid biological models with quasi-disjoint deterministic and stochastic subnets. In: Cinquemani E, Donzé A, editors. Hybrid systems biology. HSB 2016. Lecture notes in computer science, vol. 9957. Cham: Springer; 2016. p. 20–38.

    Google Scholar 

  71. David R, Alia H. Discrete, continuous, and hybrid petri nets. Discrete, continuous, and hybrid Petri nets. 2005. p. 1–524.

    Google Scholar 

  72. Herajy M, Heiner M. Hybrid representation and simulation of stiff biochemical networks. Nonlinear Anal Hybrid Syst. 2012;6:942–59.

    Article  MathSciNet  Google Scholar 

  73. Liu F, Heiner M. Colored Petri nets to model and simulate biological systems. In: Donatelli S, Kleijn J, Machado RJ, Fernandes JM, editors. Recent advances in Petri Nets and concurrency. CEUR workshop proceedings, vol. 827. 2012. p. 71–85.

    Google Scholar 

  74. Desel J, Juhás G. “What Is a Petri Net?” Informal answers for the informed reader. In: Ehrig H, Padberg J, Juhás G, Rozenberg G, editors. Unifying Petri nets. Lecture notes in computer science, vol. 2128. Berlin/Heidelberg: Springer; 2001. p. 1–25.

    Chapter  Google Scholar 

  75. Liu F, Heiner M. Petri nets for modeling and analyzing biochemical reaction networks. In: Chen M, Hofestädt R, editors. Approaches in integrative bioinformatics. Berlin: Springer; 2014. p. 245–72.

    Chapter  Google Scholar 

  76. Weber M, Kindler E. The Petri net kernel. In: Ehrig H, Reisig W, Rozenberg G, Weber H, editors. Petri net technology for communication-based systems SE. Berlin: Springer; 2003. p. 109–23.

    Chapter  Google Scholar 

  77. Grahlmann B, Best E. PEP – more than a Petri net tool. In: Margaria T, Steffen B, editors. Tools and algorithms for the construction and analysis of Systems. TACAS 1996. Lecture notes in computer science, vol. 1055. Berlin/Heidelberg: Springer; 1996. p. 397–401.

    Google Scholar 

  78. Kindler E. The ePNK: an extensible Petri net tool for PNML. In: Kristensen LM, Petrucci L, editors. Applications and theory of Petri nets. PETRI NETS 2011. Lecture notes in computer science, vol. 6709. Berlin/Heidelberg: Springer; 2011. p. 318–27.

    Google Scholar 

  79. Verbeek E, van der Aalst WMP. Woflan 2.0 A Petri-net-based workflow diagnosis tool. In: Nielsen M, Simpson D, editors. Application and theory of Petri nets 2000. ICATPN 2000. Lecture notes in computer science, vol. 1825. Berlin/Heidelberg: Springer; 2000. p. 475–84.

    Google Scholar 

  80. Davidrajuh R. Developing a new Petri net tool for simulation of discrete event systems. In: Proceedings – 2nd Asia international conference on modelling and simulation, AMS 2008. Malaysia: Kuala Lumpur; 2008. p. 861–866.

    Google Scholar 

  81. Gao J, Li L, Wu X, Wei DQ. BioNetSim: a Petri net-based modeling tool for simulations of biochemical processes. Protein Cell. 2012;3:225–9.

    Article  Google Scholar 

  82. Franck P. Quickly prototyping petri nets tools with {SNAKES}. In: Proceedings of the 1st international conference on Simulation tools and techniques for communications, networks and systems & workshops (Simutools ‘08). ICST, Brussels, Belgium; 2008. p. 1–17.

    Google Scholar 

  83. Zimmermann A, Freiheit J, German R, Hommel G. Petri net modelling and performability evaluation with TimeNET 3.0. In: Haverkort B, Bohnenkamp H, Smith C, editors. Computer performance evaluation modelling techniques and tools SE – 14. Berlin: Springer; 2000. p. 188–202.

    Chapter  Google Scholar 

  84. Berthomieu B, Ribet P-O, Vernadat F. The tool TINA – construction of abstract state spaces for Petri nets and time Petri nets. Int J Prod Res. Taylor & Francis Group. 2004;42:2741–56.

    Article  Google Scholar 

  85. Jensen K, Kristensen LM, Wells L. Coloured Petri nets and CPN tools for modelling and validation of concurrent systems. Int J Softw Tools Technol Transf. 2007;9:213–54.

    Article  Google Scholar 

  86. Chiola G, Franceschinis G, Gaeta R, Ribaudo M. GreatSPN 1.7: graphical editor and analyzer for timed and stochastic Petri nets. Perform Eval. 1995;24:47–68.

    Article  Google Scholar 

  87. Nagasaki M, Saito A, Jeong E, Li C, Kojima K, Ikeda E, et al. Cell illustrator 4.0: a computational platform for systems biology. In Silico Biol. 2010;10:5–26.

    Google Scholar 

  88. Heiner M, Schwarick M, Wegener J. Charlie – an extensible Petri net analysis tool. In: Devillers RR, Valmari A, editors. Petri nets 2015. Brussels: Springer; 2015.

    MATH  Google Scholar 

  89. Heiner M, Rohr C, Schwarick M. MARCIE – model checking and reachability analysis done efficiently. In: Petri nets 2013. Berlin: Springer; 2013. p. 389–99.

    Chapter  Google Scholar 

  90. Herajy M. Computational steering of multi-scale biochemical networks. Cottbus: Brandenburgischen Technische Universität; 2013.

    Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação de Amparo a Pesquisa do Estado de Goiás (FAPEG) and CNPq.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carvalho, R.V., Verbeek, F.J., Coelho, C.J. (2018). Bio-modeling Using Petri Nets: A Computational Approach. In: Alves Barbosa da Silva, F., Carels, N., Paes Silva Junior, F. (eds) Theoretical and Applied Aspects of Systems Biology. Computational Biology, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-74974-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74974-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74973-0

  • Online ISBN: 978-3-319-74974-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics