Advertisement

At the Crossroads of Three Seemingly Divergent Approaches to Quantum Mechanics

Chapter
Part of the STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health book series (STEAM)

Abstract

Several concepts stemming from three apparently divergent approaches to quantum mechanics—Bohmian Mechanics, QBism, and Time-Symmetric Quantum Mechanics—are interwoven in an information-theoretic Darwinian scheme applied to fundamental physical systems that might contribute to shed light on some long-standing quantum mechanical conundrums.

Keywords

Quantum mechanical foundations Darwinian evolution Adaptive dynamics Quantum information Information theory 

References

  1. 1.
    Schrödinger, E.: Nature and the Greeks. Cambridge University Press, Cambridge (1954)MATHGoogle Scholar
  2. 2.
    Mückenheim, W.: A review of extended probabilities. Phys. Rep. 133, 337–401 (1986)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Jaeger, G.: Entanglement, Information, and the Interpretation of Quantum Mechanics. Springer, Berlin (2009)CrossRefGoogle Scholar
  4. 4.
    Jaeger, G.: Quantum Objects. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  5. 5.
    Styer, D.F., Balkin, M.S., Becker, K.M., Burns, M.R., Dudley, C.E., Forth, S.T., Gaumer, J.S., Kramer, M.A., Oertel, D.C., Park, L.H., Rinkoski, M.T., Smith, C.T., Wotherspoon, T.D.: Nine formulations of quantum mechanics. Am. J. Phys. 70, 288–297 (2002)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Goldstein, S.: Bohmian mechanics. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (Fall 2016 edition). https://plato.stanford.edu/archives/fall2016/entries/qm-bohm/ (2016)
  7. 7.
    Healey, R.: Quantum-Bayesian and pragmatist views of quantum theory. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (Winter 2016 edition). https://plato.stanford.edu/archives/win2017/entries/quantum-bayesian/ (2016)
  8. 8.
    Aharonov, Y., Popescu, S., Tollaksen, J.: A time-symmetric formulation of quantum mechanics. Phys. Today. 63, 27–32 (2010)CrossRefGoogle Scholar
  9. 9.
    t Hooft, G.: The free-will postulate in quantum mechanics (2007). arXiv:quant-ph/0701097Google Scholar
  10. 10.
    Hossenfelder, S.: Testing superdeterministic conspiracy (2014). arXiv:1401.0286[quant-ph]Google Scholar
  11. 11.
    Bell, J.: In: Davies, P.C.W., Brown, J.R. (eds.) The Ghost in the Atom, p. 73. Cambridge University Press, Cambridge (1986)Google Scholar
  12. 12.
    Plotnitsky, A.: Niels Bohr and Complementarity. Springer, New York (2013)MATHGoogle Scholar
  13. 13.
    O’Connor, T.: Free will. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (Summer 2016 edition). https://plato.stanford.edu/archives/sum2016/entries/freewill/ (2016)
  14. 14.
    Baladrón, C.: Physical microscopic free-choice model in the framework of a Darwinian approach to quantum mechanics. Fortschr. Phys. 65, 1600052 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Vaidman, L.: Many-worlds interpretation of quantum mechanics. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (Fall 2016 edition). https://plato.stanford.edu/archives/fall2016/entries/qm-manyworlds/ (2016)
  16. 16.
    Bohm, D., Hiley, B.J.: The Undivided Universe. An Ontological Interpretation of Quantum Theory. Routledge, London (1993)Google Scholar
  17. 17.
    Goldstein, S.: Bohmian mechanics and quantum information. Found. Phys. 40, 335–355 (2010)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Baladrón, C.: In search of the adaptive foundations of quantum mechanics. Phys. E. 42, 335–338 (2010)CrossRefGoogle Scholar
  19. 19.
    Baladrón, C.: Elements for the development of a Darwinian scheme leading to quantum mechanics. In: Nieuwenhuizen, T., et al. (eds.) Quantum Foundations and Open Quantum Systems, pp. 489–519. World Scientific, Singapore (2014)CrossRefGoogle Scholar
  20. 20.
    Baladrón, C., Khrennikov, A.: Quantum formalism as an optimisation procedure of information flows for physical and biological systems. BioSystems. 150, 13–21 (2016)CrossRefGoogle Scholar
  21. 21.
    Baladrón, C., Khrennikov, A.: Outline of a unified Darwinian evolutionary theory for physical and biological systems. Prog. Biophys. Mol. Biol. 130, 80 (2017).  https://doi.org/10.1016/j.pbiomolbio.2017.05.006 CrossRefGoogle Scholar
  22. 22.
    Barker-Plummer, D.: Turing machines. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (Winter 2016 edition). http://plato.stanford.edu/archives/win2016/entries/turing-machine/ (2016)
  23. 23.
    Deutsch, D.: Proc. R. Soc. Lond. A. Quantum theory, the Church-Turing principle and the universal quantum computer. 400, 97–117 (1985)CrossRefGoogle Scholar
  24. 24.
    Timpson, C.: Philosophical aspects of quantum information theory. In: Rickles, D. (ed.) The Ashgate Companion to the New Philosophy of Physics, pp. 197–261. Ashgate, Aldershot (2008)Google Scholar
  25. 25.
    Aldrich, H.E., Hodgson, G.M., Hull, D.L., Knudsen, T., Mokyr, J., Vanberg, V.J.: In defence of generalized Darwinism. J. Evol. Econ. 18, 577–596 (2008)CrossRefGoogle Scholar
  26. 26.
    Asano, M., Khrennikov, A., Ohya, M., Tanaka, Y., Yamato, I.: Quantum Adaptivity in Biology: From Genetics to Cognition. Springer, Heidelberg (2014)MATHGoogle Scholar
  27. 27.
    Asano, M., Basieva, I., Khrennikov, A., Ohya, M., Tanaka, Y., Yamato, I.: Quantum information biology: from information interpretation of quantum mechanics to applications in molecular biology and cognitive psychology. Found. Phys. 45, 1362–1378 (2015)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Perrard, S., Labousse, M., Miskin, M., Fort, E., Couder, Y.: Self-organization into quantized eigenstates of a classical wave-driven particle. Nat. Commun. 5, 3219 (2014)CrossRefGoogle Scholar
  29. 29.
    Perrard, S., Fort, E., Couder, Y.: Wave-based turing machine: time reversal and information erasing. Phys. Rev. Lett. 117, 094502 (2016)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Chatterjee, K., Pavlogiannis A., Adlam, B., Nowak, M.A.: The time scale of evolutionary trajectories (2013). <hal-00907940>Google Scholar
  31. 31.
    Valentini, A.: Astrophysical and cosmological tests of quantum theory. J. Phys. A Math. Theor. 40, 3285–3303 (2007)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Chomsky, N.: New Horizons in the Study of Language and Mind. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar
  33. 33.
    Peres, A.: Unperformed experiments have no results. Am. J. Phys. 46, 745–757 (1978)CrossRefGoogle Scholar
  34. 34.
    Smolin, L.: The status of cosmological natural selection (2006). arXiv:hep-th/0612185Google Scholar
  35. 35.
    Zurek, W.H.: Quantum Darwinism. Nat. Phys. 5, 181–188 (2009)CrossRefGoogle Scholar
  36. 36.
    Smolin, L.: Temporal naturalism (2013). arXiv:1310.8539[physics.hist-ph]Google Scholar
  37. 37.
    Lloyd, S.: The universe as quantum computer (2013). arXiv:1312.4455v1 [quant-ph]Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Física Teórica, Atómica y ÓpticaUniversidad de ValladolidValladolidSpain
  2. 2.International Center for Mathematical Modeling in Physics and Cognitive ScienceLinnaeus UniversityVäxjöSweden
  3. 3.National Research University of Information Technologies, Mechanics and Optics (ITMO)St. PetersburgRussia

Personalised recommendations