Robust Data-Driven Fault Detection in Dynamic Process Environments Using Discrete Event Systems

  • Edwin LughoferEmail author


This chapter is dedicated to the improvement of robustness and performance of continuous data-driven fault detection (FD) systems with the usage of discrete event systems. With data-driven FD it is meant that causal relations and variable dependencies in the system are explored as nominal reference models for detecting atypical occurrences. The models are automatically extracted from data, typically collected within multi-sensor networks, which can be of large-scale nature leading to very high-dimensional learning settings. We will first demonstrate several principal concepts and algorithms for establishing such models in batch, off-line environments, together with advanced anomaly and fault detection strategies based on these models. Then, we will explain concepts how to address system dynamics properly and with sufficient accuracy by updating these models on demand, on the fly and fully autonomously during on-line processing mode. The problem therein is that upcoming failures also trigger dynamic changes in the process, which have to be distinguished from intended (non-failure) changes, as these should not be respected in model adaptation, obviously (as they would induce a deteriorating performance). We thus will demonstrate how signals from discrete event systems can be hybridized with multi-sensor measurement systems (continuously recorded channel signals) in order to properly realize such a distinction. This hybridization can be seen as a new form of hybrid dynamic systems which we see as necessary for preventing the time-intensive a priori collection of typical fault patterns or fault signatures (which are mostly application dependent) and to increase the level of automatization. Therein, a specific automated (data-driven) fault isolation technique acting on the residual signals and on the statistics extracted from causal relation networks serves as methodological back-bone. Whenever a distinction between intended and non-intended changes can be made with high accuracy, models can be more safely updated, which leads to a higher performance and robustness in the data-driven FD.



The author acknowledges the Austrian research funding association (FFG) within the scope of the “IKT of the future” programme, project “Generating process feedback from heterogeneous data sources in quality control (mvControl)” (contract # 849962).


  1. 1.
    M. Affenzeller, S. Winkler, S. Wagner, A. Beham, Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications (Chapman & Hall, Boca Raton, FL, 2009)Google Scholar
  2. 2.
    S. Agarwal, D. Starobinski, A. Trachtenberg, On the scalability of data synchronization protocols for PDAs and mobile devices. IEEE Netw. 16(4), 22–28 (2002)Google Scholar
  3. 3.
    J. Aguilar-Martin, Qualitative control, diagnostic and supervision of complex processes. Math. Comput. Simul. 36(2), 115–127 (1994)Google Scholar
  4. 4.
    D. Albesano, R. Gemello, P. Laface, F. Mana, S. Scanzio, Adaptation of artificial neural networks avoiding catastrophic forgetting, in International Joint Conference on Neural Networks 2006 (2006), pp. 1554–1561Google Scholar
  5. 5.
    C. Alcala, S. Qin, Reconstruction-based contribution for process monitoring. Automatica 45(7), 1593–1600 (2009)Google Scholar
  6. 6.
    S. Alizadeh, A. Kalhor, H. Jamalabadi, B. Araabi, M. Ahmadabadi, Online local input selection through evolving heterogeneous fuzzy inference system. IEEE Trans. Fuzzy Syst. 24(6), 1364–1377 (2016)Google Scholar
  7. 7.
    M. Andersson, A comparison of nine pls1 algorithms. J. Chemometr. 23, 518–529 (2009)Google Scholar
  8. 8.
    P. Angelov, Evolving Takagi-Sugeno fuzzy systems from streaming data, eTS+, in Evolving Intelligent Systems: Methodology and Applications, ed. by P. Angelov, D. Filev, N. Kasabov (Wiley, New York, 2010), pp. 21–50Google Scholar
  9. 9.
    P. Angelov, R. Yager, A new type of simplified fuzzy rule-based system. Int. J. Gen. Syst. 41(2), 163–185 (2012)Google Scholar
  10. 10.
    P. Angelov, X. Zhou, Evolving fuzzy-rule-based classifiers from data streams. IEEE Trans. Fuzzy Syst. 16(6), 1462–1475 (2008)Google Scholar
  11. 11.
    P. Angelov, V. Giglio, C. Guardiola, E. Lughofer, J. Luján, An approach to model-based fault detection in industrial measurement systems with application to engine test benches. Meas. Sci. Technol. 17(7), 1809–1818 (2006)Google Scholar
  12. 12.
    P. Angelov, D. Filev, N. Kasabov, Evolving Intelligent Systems — Methodology and Applications (Wiley, New York, 2010)Google Scholar
  13. 13.
    K. Aström, B. Wittenmark, Adaptive Control, 2nd edn. (Addison-Wesley Longman, Boston, MA, 1994)Google Scholar
  14. 14.
    B. Babadi, N. Kalouptsidis, V. Tarokh, SPARLS: the sparse rls algorithm. IEEE Trans. Signal Process. 58(8), 4013–4025 (2010)Google Scholar
  15. 15.
    D. Bartholomew, F. Steele, J. Galbraith, I. Moustaki, Analysis of Multivariate Social Science Data. Statistics in the Social and Behavioral Sciences Series, 2nd edn. (Taylor & Francis, London, 1993)Google Scholar
  16. 16.
    S. Bay, K. Saito, N. Ueda, P. Langley, A framework for discovering anomalous regimes in multivariate time-series data with local models, in Symposium on Machine Learning for Anomaly Detection, Stanford, 2004Google Scholar
  17. 17.
    A. Bifet, G. Holmes, R. Kirkby, B. Pfahringer, MOA: massive online analysis. J. Mach. Learn. Res. 11, 1601–1604 (2010)Google Scholar
  18. 18.
    P. Boltryk, C.J. Harris, N.M. White, Intelligent sensors - a generic software approach. J. Phys. Conf. Ser. 15, 155–160 (2005)Google Scholar
  19. 19.
    L. Breiman, J. Friedman, C. Stone, R. Olshen, Classification and Regression Trees (Chapman & Hall, Boca Raton, FL, 1993)Google Scholar
  20. 20.
    E. Brusa, L. Lemma, D. Benasciutti, Vibration analysis of a sendzimir cold rolling mill and bearing fault detection. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 224(C8), 1645–1654 (2010)Google Scholar
  21. 21.
    P. Caleb-Solly, J. Smith, Adaptive surface inspection via interactive evolution. Image Vis. Comput. 25(7), 1058–1072 (2007)Google Scholar
  22. 22.
    V. Carvalho, W. Cohen, Single-pass online learning: performance, voting schemes and online feature selection, in Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM Press, New York, 2006), pp. 548–553Google Scholar
  23. 23.
    C. Cernuda, E. Lughofer, P. Hintenaus, W. Märzinger, T. Reischer, M. Pawlicek, J. Kasberger, Hybrid adaptive calibration methods and ensemble strategy for prediction of cloud point in melamine resin production. Chemom. Intell. Lab. Syst. 126, 60–75 (2013)Google Scholar
  24. 24.
    C. Cernuda, E. Lughofer, G. Mayr, T. Röder, P. Hintenaus, W. Märzinger, J. Kasberger, Incremental and decremental active learning for optimized self-adaptive calibration in viscose production. Chemom. Intell. Lab. Syst. 138, 14–29 (2014)Google Scholar
  25. 25.
    V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: a survey. ACM Comput. Surv. 41(3), 1–58 (2009)Google Scholar
  26. 26.
    H. Chen, P. Tino, X. Yao, A. Rodan, Learning in the model space for fault diagnosis. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 124–136 (2014)Google Scholar
  27. 27.
    G. Claeskens, N. Hjort, Model Selection and Model Averaging (Cambridge University Press, Cambridge, 2008)Google Scholar
  28. 28.
    L. Cohen, G. Avrahami-Bakish, M. Last, A. Kandel, O. Kipersztok, Real-time data mining of non-stationary data streams from sensor networks. Inf. Fusion 9(3), 344–353 (2008)Google Scholar
  29. 29.
    B. Costa, P. Angelov, L. Guedes, Fully unsupervised fault detection and identification based on recursive density estimation and self-evolving cloud-based classifier. Neurocomputing 150(A), 289–303 (2015)Google Scholar
  30. 30.
    D. Cox, D. Hinkley, Theoretical Statistics (Chapman & Hall, London, 1974)Google Scholar
  31. 31.
    J.C. da Silva, A. Saxena, E. Balaban, K. Goebel, A knowledge-based system approach for sensor fault modeling, detection and mitigation. Expert Syst. Appl. 39, 10977–10989 (2012)Google Scholar
  32. 32.
    S.J. Delany, P. Cunningham, A. Tsymbal, L. Coyle, Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of datasets. IEEE Trans. Neural Netw. 8(1), 148–154 (1997)Google Scholar
  33. 33.
    S. Ding, Model-Based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools (Springer, Berlin, 2008)Google Scholar
  34. 34.
    D. Dou, S. Zhou, Comparison of four direct classification methods for intelligent fault diagnosis of rotating machinery. Appl. Soft Comput. 46, 459–468 (2016)Google Scholar
  35. 35.
    H. Efendic, A. Schrempf, L.D. Re, Data based fault isolation in complex measurement systems using models on demand, in Proceedings of the IFAC-Safeprocess 2003 (IFAC, Washington, DC, 2003), pp. 1149–1154Google Scholar
  36. 36.
    B. Efron, R. Tibshirani, Improvements on cross-validation: the .632+ bootstrap method. J. Am. Stat. Assoc. 92(438), 548–560 (1997)Google Scholar
  37. 37.
    C. Eitzinger, W. Heidl, E. Lughofer, S. Raiser, J. Smith, M. Tahir, D. Sannen, H. van Brussel, Assessment of the influence of adaptive components in trainable surface inspection systems. Mach. Vis. Appl. 21(5), 613–626 (2010)Google Scholar
  38. 38.
    D. Evans, A. Jones, A proof of the gamma test. Roy. Soc. 458, 2759–2799 (2002)Google Scholar
  39. 39.
    X. Fang, J. Du, Z. Wei, P. He, H. Bai, X. Wang, B. Lu, An investigation on effects of process parameters in fused-coating based metal additive manufacturing. J. Manuf. Process. 28(2), 383–389 (2017)Google Scholar
  40. 40.
    D. Fernández-Francos, D. Martínez-Rego, O. Fontenla-Romero, A. Alonso-Betanzos, Automatic bearing fault diagnosis based on one-class v-svm. Comput. Ind. Eng. 64(1), 357–365 (2013)Google Scholar
  41. 41.
    L. Fortuna, S. Graziani, A. Rizzo, M. Xibilia, Soft Sensor for Monitoring and Control of Industrial Processes (Springer, London, 2007)Google Scholar
  42. 42.
    H. Fourati, Multisensor Data Fusion: From Algorithms and Architectural Design to Applications (CRC Press, Taylor & Francis Group, Boca Raton, FL, 2015)Google Scholar
  43. 43.
    G. Franceschini, S. Macchietto, Model-based design of experiments for parameter precision: state of the art. Chem. Eng. Sci. 63(19), 4846–4872 (2008)Google Scholar
  44. 44.
    J. Gama, Knowledge Discovery from Data Streams (Chapman & Hall/CRC, Boca Raton, FL, 2010)Google Scholar
  45. 45.
    V. Giurgiutiu, Structural Health Monitoring: Fundamentals and Applications: With Piezoelectric Wafer Active Sensors (Academic, San Diego, CA, 2007)Google Scholar
  46. 46.
    D. Gorinevsky, Bayesian fault isolation in multivariate statistical process monitoring, in Proceedings of the American Control Conference, San Francisco, CA (2011), pp. 1963–1968Google Scholar
  47. 47.
    D. Gustafson, W. Kessel, Fuzzy clustering with a fuzzy covariance matrix, in Proceedings of the IEEE CDC Conference 1979, San Diego, CA (1979), pp. 761–766Google Scholar
  48. 48.
    I. Guyon, A. Elisseeff, An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)Google Scholar
  49. 49.
    F. Harrel, Regression Modeling Strategies (Springer, New York, 2001)Google Scholar
  50. 50.
    L. Hartert, M. Sayed-Mouchaweh, Dynamic supervised classification method for online monitoring in non-stationary environments. Neurocomputing 126, 118–131 (2014)Google Scholar
  51. 51.
    T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd edn. (Springer, New York, 2009)Google Scholar
  52. 52.
    W. Heidl, S. Thumfart, E. Lughofer, C. Eitzinger, E. Klement, Machine learning based analysis of gender differences in visual inspection decision making. Inf. Sci. 224, 62–76 (2013)Google Scholar
  53. 53.
    T. Hill, P. Lewicki, Statistics: Methods and Applications (StatSoft, Tulsa, 2007)Google Scholar
  54. 54.
    G. Hinton, S. Roweis, Stochastic neighbor embedding. Adv. Neural Inf. Process. Syst. 15, 833–840 (2003)Google Scholar
  55. 55.
    M. Hisada, S. Ozawa, K. Zhang, N. Kasabov, Incremental linear discriminant analysis for evolving feature spaces in multitask pattern recognition problems. Evol. Syst. 1(1), 17–27 (2010)Google Scholar
  56. 56.
    G. Huang, P. Saratchandran, N. Sundararajan, An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks. IEEE Trans. Syst. Man Cybern. B Cybern. 34(6), 2284–2292 (2004)Google Scholar
  57. 57.
    R. Isermann, Fault Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance (Springer, Berlin, 2009)Google Scholar
  58. 58.
    R. Isermann, P. Ballé, Trends in the application of model-based fault detection and diagnosis of technical processes. Control. Eng. Pract. 5(5), 709–719 (1997)Google Scholar
  59. 59.
    H. Jiang, C. Kwong, W. Ip, T. Wong, Modeling customer satisfaction for new product development using a PSO-based ANFIS approach. Appl. Soft Comput. 12(2), 726–734 (2013)Google Scholar
  60. 60.
    I. Jolliffe, Principal Component Analysis (Springer, Berlin, 2002)Google Scholar
  61. 61.
    R. Kalman, A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 82, 35–45 (1960)Google Scholar
  62. 62.
    N. Kasabov, Evolving Connectionist Systems: The Knowledge Engineering Approach, 2nd edn. (Springer, London, 2007)Google Scholar
  63. 63.
    B. Khaleghi, A. Khamis, F.O. Karray, S.N. Razavi, Multisensor data fusion: a review of the state-of-the-art. Inf. Fusion 14(1), 28–44 (2013)Google Scholar
  64. 64.
    I. Khamassi, M. Sayed-Mouchaweh, M. Hammami, K. Ghedira, Discussion and review on evolving data streams and concept drift adapting. Evol. Syst. (2017, on-line and in press).  https://10.1007/s12530-016-9168-2
  65. 65.
    J. Korbicz, J. Koscielny, Z. Kowalczuk, W. Cholewa, Fault Diagnosis - Models, Artificial Intelligence and Applications (Springer, Berlin, 2004)Google Scholar
  66. 66.
    P. Laskov, C. Gehl, S. Krüger, K. Müller, Incremental support vector learning: analysis, implementation and applications. J. Mach. Learn. Res. 7, 1909–1936 (2006)Google Scholar
  67. 67.
    D. Leite, R. Palhares, C.S. Campos, F. Gomide, Evolving granular fuzzy model-based control of nonlinear dynamic systems. IEEE Trans. Fuzzy Syst. 23(4), 923–938 (2015)Google Scholar
  68. 68.
    A. Lemos, Adaptive fault detection and diagnosis using evolving intelligent systems, in Proceedings of the IEEE Evolving and Adaptive Intelligent Systems Conference (EAIS) 2016, Natal (2016)Google Scholar
  69. 69.
    A. Lemos, W. Caminhas, F. Gomide, Adaptive fault detection and diagnosis using an evolving fuzzy classifier. Inf. Sci. 220, 64–85 (2013)Google Scholar
  70. 70.
    G. Leng, X.J. Zeng, J. Keane, An improved approach of self-organising fuzzy neural network based on similarity measures. Evol. Syst. 3(1), 19–30 (2012)Google Scholar
  71. 71.
    Y. Li, On incremental and robust subspace learning. Pattern Recogn. 37(7), 1509–1518 (2004)Google Scholar
  72. 72.
    Z. Liang, Y. Li, Incremental support vector machine learning in the primal and applications. Neurocomputing 72(10–12), 2249–2258 (2009)Google Scholar
  73. 73.
    E. Lima, M. Hell, R. Ballini, F. Gomide, Evolving fuzzy modeling using participatory learning, in Evolving Intelligent Systems: Methodology and Applications, ed. by P. Angelov, D. Filev, N. Kasabov (Wiley, New York, 2010), pp. 67–86Google Scholar
  74. 74.
    D. Liu, Y. Zhang, Z. Yu, M. Zeng, Incremental supervised locally linear embedding for machinery fault diagnosis. Eng. Appl. Artif. Intell. 50(C), 60–70 (2016)Google Scholar
  75. 75.
    L. Ljung, System Identification: Theory for the User (Prentice Hall PTR, Prentice Hall, Upper Saddle River, NJ, 1999)Google Scholar
  76. 76.
    E. Lughofer, FLEXFIS: a robust incremental learning approach for evolving TS fuzzy models. IEEE Trans. Fuzzy Syst. 16(6), 1393–1410 (2008)Google Scholar
  77. 77.
    E. Lughofer, Evolving Fuzzy Systems — Methodologies, Advanced Concepts and Applications (Springer, Berlin, 2011)Google Scholar
  78. 78.
    E. Lughofer, On-line incremental feature weighting in evolving fuzzy classifiers. Fuzzy Sets Syst. 163(1), 1–23 (2011)Google Scholar
  79. 79.
    E. Lughofer, eVQ-AM: an extended dynamic version of evolving vector quantization, in Proceedings of the 2013 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS), Singapore (2013), pp. 40–47Google Scholar
  80. 80.
    E. Lughofer, On-line assurance of interpretability criteria in evolving fuzzy systems — achievements, new concepts and open issues. Inf. Sci. 251, 22–46 (2013)Google Scholar
  81. 81.
    E. Lughofer, C. Guardiola, On-line fault detection with data-driven evolving fuzzy models. J. Control Intell. Syst. 36(4), 307–317 (2008)Google Scholar
  82. 82.
    E. Lughofer, S. Kindermann, SparseFIS: data-driven learning of fuzzy systems with sparsity constraints. IEEE Trans. Fuzzy Syst. 18(2), 396–411 (2010)Google Scholar
  83. 83.
    E. Lughofer, J.L. Bouchot, A. Shaker, On-line elimination of local redundancies in evolving fuzzy systems. Evol. Syst. 2(3), 165–187 (2011)Google Scholar
  84. 84.
    E. Lughofer, C. Eitzinger, C. Guardiola, On-line quality control with flexible evolving fuzzy systems, in Learning in Non-stationary Environments: Methods and Applications, ed. by M. Sayed-Mouchaweh, E. Lughofer (Springer, New York, 2012), pp. 375–406Google Scholar
  85. 85.
    E. Lughofer, C. Cernuda, S. Kindermann, M. Pratama, Generalized smart evolving fuzzy systems. Evol. Syst. 6(4), 269–292 (2015)Google Scholar
  86. 86.
    E. Lughofer, S. Kindermann, M. Pratama, J. Rubio, Top-down sparse fuzzy regression modeling from data with improved coverage. Int. J. Fuzzy Syst. 19(5), 1645–1658 (2017)Google Scholar
  87. 87.
    E. Lughofer, R. Richter, U. Neissl, W. Heidl, C. Eitzinger, T. Radauer, Explaining classifier decisions linguistically for stimulating and improving operators labeling behavior. Inf. Sci. 420, 16–36 (2017)Google Scholar
  88. 88.
    S. Mahadevan, S. Shah, Fault detection and diagnosis in process data using one-class support vector machines. J. Process Control 19(10), 1627–1639 (2009)Google Scholar
  89. 89.
    L. Manevitz, M. Yousef, One-class svms for document classification. J. Mach. Learn. Res. 2, 139–154 (2001)Google Scholar
  90. 90.
    T. McConaghy, Fast scalable, deterministic symbolic regression technology, in Genetic Programming Theory and Practice IX, ed. by R. Riolo et al. Genetic and Evolutionary Computation (Springer Science+Business Media, Heidelberg, 2011), pp. 235–260Google Scholar
  91. 91.
    P. Mcnicholas, T. Murphy, Parsimonious gaussian mixture models. Stat. Comput. 18(3), 285–296 (2008)Google Scholar
  92. 92.
    L. Mendonça, J. Sousa, J.S. da Costa, An architecture for fault detection and isolation based on fuzzy methods. Expert Syst. Appl. 36(2), 1092–1104 (2009)Google Scholar
  93. 93.
    T. Nakamura, A. Lemos, A batch-incremental process fault detection and diagnosis using mixtures of probabilistic PCA, in Proceedings of the Evolving and Adaptive Intelligent Systems (EAIS) Conference 2014 (IEEE Press, Linz, 2014)Google Scholar
  94. 94.
    O. Nelles, Nonlinear System Identification (Springer, Berlin, 2001)Google Scholar
  95. 95.
    L. Ngia, J. Sjöberg, Efficient training of neural nets for nonlinear adaptive filtering using a recursive Levenberg-Marquardt algorithm. IEEE Trans. Signal Process. 48(7), 1915–1926 (2000)Google Scholar
  96. 96.
    P. Odgaard, B. Lin, S. Jorgensen, Observer and data-driven-model-based fault detection in power plant coal mills. IEEE Trans. Energy Convers. 23(2), 659–668 (2008)Google Scholar
  97. 97.
    W. Penny, S. Roberts, Error bars for linear and nonlinear neural network regression models (1998).
  98. 98.
    K. Pichler, E. Lughofer, M. Pichler, T. Buchegger, E. Klement, M. Huschenbett, Fault detection in reciprocating compressor valves under varying load conditions. Mech. Syst. Signal Process. 70–71, 104–119 (2016)CrossRefGoogle Scholar
  99. 99.
    M. Pratama, S. Anavatti, E. Lughofer, C. Lim, An incremental meta-cognitive-based scaffolding fuzzy neural network. Neurocomputing 171, 89–105 (2016)CrossRefGoogle Scholar
  100. 100.
    M. Pratama, J. Lu, E. Lughofer, G. Zhang, M. Er, Incremental learning of concept drift using evolving type-2 recurrent fuzzy neural network. IEEE Trans. Fuzzy Syst. 25(5), 1175–1192 (2017)CrossRefGoogle Scholar
  101. 101.
    M. Sayed-Mouchaweh, E. Lughofer, Learning in Non-stationary Environments: Methods and Applications (Springer, New York, 2012)CrossRefzbMATHGoogle Scholar
  102. 102.
    M. Sayed-Mouchaweh, E. Lughofer, Decentralized fault diagnosis approach without a global model for fault diagnosis of discrete event systems. Int. J. Control. 88(11), 2228–2241 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  103. 103.
    M. Schrenk, S. Krenn, M. Ripoll, A. Nevosad, S. Paar, R. Grundtner, G. Rohm, F. Franek, Statistical analysis on the impact of process parameters on tool damage during press hardening. J. Manuf. Process. 23, 222–230 (2016)CrossRefGoogle Scholar
  104. 104.
    A. Seifi, H. Riahi-Madvar, Input variable selection in expert systems based on hybrid gamma test-least square support vector machine, ANFIS and ANN models, in Advances in Expert Systems (Springer, Berlin, 2012)Google Scholar
  105. 105.
    F. Serdio, E. Lughofer, K. Pichler, T. Buchegger, H. Efendic, Residual-based fault detection using soft computing techniques for condition monitoring at rolling mills. Inf. Sci. 259, 304–320 (2014)CrossRefGoogle Scholar
  106. 106.
    F. Serdio, E. Lughofer, K. Pichler, M. Pichler, T. Buchegger, H. Efendic, Fault detection in multi-sensor networks based on multivariate time-series models and orthogonal transformations. Inf. Fusion 20, 272–291 (2014)CrossRefGoogle Scholar
  107. 107.
    F. Serdio, E. Lughofer, K. Pichler, M. Pichler, T. Buchegger, H. Efendic, Fuzzy fault isolation using gradient information and quality criteria from system identification models. Inf. Sci. 316, 18–39 (2015)CrossRefGoogle Scholar
  108. 108.
    F. Serdio, E. Lughofer, A.C. Zavoianu, K. Pichler, M. Pichler, T. Buchegger, H. Efendic, Improved fault detection employing hybrid memetic fuzzy modeling and adaptive filters. Appl. Soft Comput. 51, 60–82 (2017)CrossRefGoogle Scholar
  109. 109.
    M. Shabanian, M. Montazeri, A neuro-fuzzy online fault detection and diagnosis algorithm for nonlinear and dynamic systems. Int. J. Control. Autom. Syst. 9(4), 665–670 (2011)CrossRefGoogle Scholar
  110. 110.
    A. Shaker, E. Lughofer, Self-adaptive and local strategies for a smooth treatment of drifts in data streams. Evol. Syst. 5(4), 239–257 (2014)CrossRefGoogle Scholar
  111. 111.
    A. Shilton, M. Palaniswami, D. Ralph, A. Tsoi, Incremental training of support vector machines. IEEE Trans. Neural Netw. 16(1), 114–131 (2005)CrossRefGoogle Scholar
  112. 112.
    S. Simani, C. Fantuzzi, R. Patton, Model-Based Fault Diagnosis in Dynamic Systems Using Identification Techniques (Springer, Berlin, 2002)Google Scholar
  113. 113.
    C. So, S. Ng, S. Leung, Gradient based variable forgetting factor RLS algorithm. Signal Process. 83(6), 1163–1175 (2003)CrossRefzbMATHGoogle Scholar
  114. 114.
    M. Stone, Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. 36(1), 111–147 (1974)MathSciNetzbMATHGoogle Scholar
  115. 115.
    M. Tamura, S. Tsujita, A study on the number of principal components and sensitivity of fault detection using PCA. Comput. Chem. Eng. 31(9), 1035–1046 (2007)CrossRefGoogle Scholar
  116. 116.
    M. Tipping, C. Bishop, Probabilistic principal component analysis. J. R. Stat. Soc. Ser. B Stat. Methodol. 61(3), 611–622 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  117. 117.
    L. Wang, R. Gao, Condition Monitoring and Control for Intelligent Manufacturing (Springer, London, 2006)CrossRefGoogle Scholar
  118. 118.
    W. Wang, J. Vrbanek, An evolving fuzzy predictor for industrial applications. IEEE Trans. Fuzzy Syst. 16(6), 1439–1449 (2008)CrossRefGoogle Scholar
  119. 119.
    J. Wang, P. Zhao, S. Hoi, R. Jin, Online feature selection and its applications. IEEE Trans. Knowl. Data Eng. 26(3), 698–710 (2004)CrossRefGoogle Scholar
  120. 120.
    J. Weng, Y. Zhang, W.S. Hwang, Candid covariance-free incremental principal component analysis. IEEE Trans. Pattern Anal. Mach. Intell. 25(8), 1034–1040 (2003)CrossRefGoogle Scholar
  121. 121.
    Y. Xu, K. Wong, C. Leung, Generalized recursive least square to the training of neural network. IEEE Trans. Neural Netw. 17(1), 19–34 (2006)CrossRefGoogle Scholar
  122. 122.
    M. Yang, V. Makis, ARX model-based gearbox fault detection and localization under varying load conditions. J. Sound Vib. 329(24), 5209–5221 (2010)CrossRefGoogle Scholar
  123. 123.
    X.Q. Zeng, G.Z. Li, Incremental partial least squares analysis of big streaming data. Pattern Recogn. 47, 3726–3735 (2014)CrossRefGoogle Scholar
  124. 124.
    Y.Q. Zhang, Constructive granular systems with universal approximation and fast knowledge discovery. IEEE Trans. Fuzzy Syst. 13(1), 48–57 (2005)CrossRefGoogle Scholar
  125. 125.
    Y.Q. Zhang, Combining uncertainty sampling methods for supporting the generation of meta-examples. Inf. Sci. 196(1), 1–14 (2012)Google Scholar
  126. 126.
    E. Zhong, W. Fan, Q. Yang, O. Verscheure, J. Ren, Cross validation framework to choose amongst models and datasets for transfer learning, in Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Banff, AB (2010), pp. 547–562Google Scholar
  127. 127.
    P. Zhu, B. Chen, J. Principe, A novel extended kernel recursive least squares algorithm. Neural Netw. 32, 349–357 (2012)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Knowledge-Based Mathematical SystemsJohannes Kepler University LinzLinzAustria

Personalised recommendations