Modeling the Performance of ARQ Error Control in an LTE Transmission System

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10740)

Abstract

We consider the transmission of protocol data units in an LTE eNodeB in downlink direction and focus on the radio link control (RLC) and hybrid Automatic-Repeat-Request functionality at layer 2 of the transmission system. We model the associated window flow control of RLC frames in terms of an open queueing network with two stations and describe RLC frames waiting for acceptance by the flow control window by repeated objects collected in an orbit in front of this multi-server queueing network. We describe the correlated arrivals of frames by a general Markovian arrival process and the transfer of data transport blocks along the orthogonal frequency-division multiplexing channels by state-dependent service processes and varying channel capacities. We derive a versatile finite Markovian queueing model and show that its steady-state distribution can be computed in terms of a level-independent QBD process. Then we determine the basic performance metrics of the system in terms of the latter steady-state distribution.

Keywords

LTE performance analysis Window flow control Hybrid ARQ MAP Level-independent QBD 

Notes

Acknowledgment

The authors appreciate the anonymous reviewers for their valuable comments which helped them to improve their presentation.

References

  1. 1.
    Badia, L., Levorato, M., Zorzi, M.: Markov analysis of selective repeat type II hybrid ARQ using block codes. IEEE Trans. Commun. 56(9), 1434–1441 (2008)Google Scholar
  2. 2.
    Buchholz, P.: An EM-algorithm for MAP fitting from real traffic data. In: Kemper, P., Sanders, W.H. (eds.) TOOLS 2003. LNCS, vol. 2794, pp. 218–236. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45232-4_14 CrossRefGoogle Scholar
  3. 3.
    Dahlman, E., Parkvall, S., Skold, J.: 4G, LTE-Advanced Pro and The Road to 5G, 3rd edn. Academic Press, Cambridge (2016)Google Scholar
  4. 4.
    Hajek, B.: Birth-and-death processes on the integers with phases and general boundaries. J. Appl. Prob. 19, 488–499 (1982)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Hoßfeld, T., Schatz, R., Krieger, U.R.: QoE of YouTube video streaming for current Internet transport protocols. In: Fischbach, K., Krieger, U.R. (eds.) MMB & DFT 2014. LNCS, vol. 8376, pp. 136–150. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-319-05359-2_10 Google Scholar
  6. 6.
    IS-Wireless: 5G Toolset - Complete framework for research and education on 4G and 5G. Il. Pulawska 45b, 05–500 Piaseczno, Poland (2017)Google Scholar
  7. 7.
    Krieger, U.R., Naoumov, V., Wagner, D.: Analysis of a finite FIFO buffer in an advanced packet-switched network. IEICE Trans. Commun. E81–B(5), 937–947 (1998)Google Scholar
  8. 8.
    Krieger, U.R., Savoric, M.: Performance evaluation of ABR flow-control protocols in a wireless ATM network. In: Proceedings of Wowmom 1998, USA, pp. 73–82, October 1998Google Scholar
  9. 9.
    Kumar, K.B., et al.: Analysis of multiprogramming-multiprocessor retrial queueing systems with Bernoulli vacation schedule. Technical report, Anna University, Chennai, India (2017)Google Scholar
  10. 10.
    Kurose, J., Ross, K.W.: Computer Networking: A Top Down Approach, 7th edn. Pearson Education Ltd., Upper Saddle River (2017)Google Scholar
  11. 11.
    Liu, H., et al.: Error control schemes for networks: an overview. Mob. Netw. Appl. 2, 167–182 (1997)CrossRefGoogle Scholar
  12. 12.
    Liu, W., Krieger, U.R., Akyildiz, I.: An admission control model through outband signalling management. In: Proceedings of the IEEE INFOCOM 1992, Florence, Italy, May 1992Google Scholar
  13. 13.
    Latouche, G., Ramaswami, V.: A logarithmic reduction algorithm for quasi-birth-death processes. J. Appl. Prob. 30, 650–674 (1993)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Rossi, M., Badia, L., Zorzi, M.: SR ARQ delay statistics on N-state Markov channels with non-instantaneous feedback. IEEE Trans. Wirel. Commun. 5(6), 1526–1536 (2006)CrossRefGoogle Scholar
  15. 15.
    Sauter, M.: From GSM to LTE-Advanced Pro and 5G: An Introduction to Mobile Networks and Mobile Broadband, 3rd edn. Wiley, Hoboken (2017)CrossRefGoogle Scholar
  16. 16.
    Savoric, M., Wolisz, A., Krieger, U.R.: The impact of handover protocols on the performance of ABR flow-control algorithms in a wireless ATM network. Eur. Trans. Telecommun. 11(4), 419–430 (2000)CrossRefGoogle Scholar
  17. 17.
    Ye, J., Li, S.-Q.: Folding algorithm: a computational method for finite QBD processes with level-dependent transitions. IEEE Trans. Commun. 42(2–4), 625–639 (1994)Google Scholar
  18. 18.
    Ye, Q.: On Latouche-Ramaswami’s logarithmic reduction algorithm for quasi-birth-and-death processes. Stoch. Models 18(3), 449–467 (2002)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Zorzi, M., Rao, R.R.: On the statistics of block errors in bursty channels. IEEE Trans. Commun. 45(6), 660–667 (1997)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Fakultät WIAIOtto-Friedrich-UniversitätBambergGermany
  2. 2.Department of MathematicsAnna UniversityChennaiIndia

Personalised recommendations