Skip to main content

Numerical and Experimental Comparison of Performance of Two Stage and Helical Savonius Wind Turbines

  • Conference paper
  • First Online:
  • 706 Accesses

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

This paper presents a numerical and experimental comparison of vertical axis wind turbine involving two stage and helical Savonius rotors. The experimental study is conducted in the Aerodynamic Tunnel Professor Debi Pada Sadhu at the Fluid Mechanics Laboratory of the UFRGS. The rotors are manufactured by 3D prototyping technique. The numerical simulations are performed using the Finite Volumes Method. The dynamic torque coefficient, power coefficient, and an aerodynamic analysis of the two turbines are compared for tip speed ratios (λ) between 0.2 and 0.8. The torque and power coefficients of the helical turbine are higher than the two stage turbine for most cases. The helical turbine shows less torque variation along each rotation when compared with the two stage turbine. The differences between the numerical and experimental values obtained are between 6.17 and 13.3% for the two stage turbine and between 2.34 and 13.11% for the helical turbine.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

A :

Area, m²

c :

Chord, m

C P :

Power coefficient

C T :

Torque coefficient

d h :

Hole diameter, m

d b :

Bucket diameter, m

e :

Thickness, m

e pe :

Thickness of the buckets, m

F :

Force, N

g :

Gravity, m/s²

h 1 :

Turbine stage height, m

h 2 :

Thickness of the intermediate plate, m

k :

Turbulent kinetic energy, J/kg

m BALANCE :

Balance mass, kg

m LOAD :

Load mass, kg

P :

Power, W

r :

Rotor radius, m

r t :

Total radius, m

r SHAFT :

Shaft radius, m

Re :

Reynolds number

s :

Overlap, m

t STRING :

String thickness, m

T :

Moment, N·m

V o :

Undisturbed air flow velocity, m/s

u :

Velocity flow, m/s

uʹ:

Velocity fluctuation, m/s

\(\bar{u}\) :

Average velocity, m/s

Δt :

Time step, s

Δθ :

Angular step, °

μ :

Air dynamic viscosity, kg/(m·s)

ν :

Air kinematic viscosity, m²/s

θ :

Angular position, °

ρ :

Atmospheric air density, kg/m3

λ :

Tip speed ratio of the rotor

ω :

Specific turbulence dissipation rate, s−1

ω o :

Angular velocity, rad/s

τ :

Reynolds stress

References

  1. Burton, T., Jenkins, N., Sharpe, D., Bossanyi, E.: Wind Energy Handbook, 2nd edn. Wiley (2011)

    Google Scholar 

  2. Savonius, S.J.: Wind Rotor—Patent Number 1,766,765, United States Patent Office (1930)

    Google Scholar 

  3. Fujisawa, N.: On the torque mechanism on Savonius rotors. J. Wind Eng. Ind. Aerodyn. 40(3), 277–292 (1992)

    Article  Google Scholar 

  4. Saha, U.K., Thotla, S., Maity, D.: Optimum design configuration of Savonius rotor though wind tunnel experiments. J. Wind Eng. Ind. Aerodyn. 96, 1359–1375 (2008)

    Article  Google Scholar 

  5. Kamoji, M.A., Kedare, S.B., Prabhu, S.V.: Experimental investigations on single stage modified Savonius rotor. Appl. Energy 86, 1064–1073 (2009)

    Article  Google Scholar 

  6. Oliveira, C.P., Petry, A.P.: Numerical study of a helical Savonius wind turbine. In: 15th Brazilian Congress of Thermal Sciences and Engineering, ENCIT 2014, Belém do Pará (2014)

    Google Scholar 

  7. Menet, J.L., Bourabaa, N.: Increase in the Savonius rotors efficiency via a parametric investigation. In: European Wind Energy Conference, London (2004)

    Google Scholar 

  8. Akwa, J.V., Silva Jr., G.A., Petry, A.P.: Discussion on the verification of the overlap ratio influence on performance coefficients of a Savonius wind rotor using computational fluid dynamics. Renew. Energy 38, 141–149 (2012)

    Article  Google Scholar 

  9. Kamoji, M.A., Kedare, S.B., Prabhu, S.V.: Experimental investigations on single stage, two stage and three stage conventional Savonius rotor. Int. J. Energy Res. 32, 877–895 (2008)

    Article  Google Scholar 

  10. Jeon, K.S., Jeong, J.I., Pan, J.-K., Ryu, K.-W.: Effects of the end plates with various shapes and sizes on helical Savonius wind turbines. Renew. Energy 79, 167–176 (2015)

    Article  Google Scholar 

  11. Anbarsooz, M.: Aerodynamic performance of helical Savonius wind rotors with 30° and 45° twist angles: experimental and numerical studies. J. Power Energy, 1–10 (2016)

    Google Scholar 

  12. Zhao, Z., Zheng, Y., Xu, X., Lui, W., Zhou, D.: Optimum design configuration of helical Savonius rotor via numerical study. In: ASME 2009 Fluids Engineering Division Summer Meeting, Vail, Colorado, USA, 2–6 Aug 2009

    Google Scholar 

  13. Akwa, J.V., Vielmo, H.A., Petry, A.P.: A review on the performance of Savonius wind turbines. Renew. Sustain. Energy Rev., 3054–3064 (2012)

    Google Scholar 

  14. Alexander, A.J., Holownia, B.P.: Wind tunnel tests on a Savonius rotor. J. Ind. Aerodyn. 3(4), 343–351 (1978)

    Article  Google Scholar 

  15. Ferziger, J.H., Peric, M.: Computational Methods for Fluid Dynamics, 3rd edn. Springer, Berlin, Heidelberg, NY, Barcelona, Hong Kong, London, Milan, Paris, Tokyo (2002)

    Google Scholar 

  16. Patankar, S.V.: Numerical heat transfer and fluid flows. McGraw-Hill, NY, USA (1980)

    MATH  Google Scholar 

  17. Wilcox, D.C.: Turbulence Modeling for CFD. DCW Industries, Inc. (1998)

    Google Scholar 

  18. Kline, S.J., McClintock, F.A.: Describing the uncertainties in single sample experiments. Mech. Eng., 3–8 (1953)

    Google Scholar 

  19. Holman, J.P.: Experimental Methods for Engineers, 8th edn. McGraw-Hill, NY, USA (2012)

    Google Scholar 

  20. Kothe, L.B., Estudo comparativo experimental e numérico sobre o desempenho de turbinas savonius helicoidal e de duplo-estágio. Master thesis, PROMEC-UFRGS, Porto Alegre, Brazil (2016)

    Google Scholar 

  21. Roache, P.J.: Perspective: a method for uniform reporting of grid refinement studies. J. Fluids Eng. 116, 405–413 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Capes and CNPq for the financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Brito Kothe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brito Kothe, L., Prisco Petry, A. (2018). Numerical and Experimental Comparison of Performance of Two Stage and Helical Savonius Wind Turbines. In: Battisti, L., Ricci, M. (eds) Wind Energy Exploitation in Urban Environment. TUrbWind 2017. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-74944-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74944-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74943-3

  • Online ISBN: 978-3-319-74944-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics