Values and Inductive Risk

  • Pierluigi Barrotta
Part of the Logic, Argumentation & Reasoning book series (LARI, volume 16)


Values are not only necessary to establish the meaning of some scientific terms, they also enter into the consequences of accepting or rejecting a theory. This argument, based on ‘inductive risk’, was proposed many years ago and has been returned to and criticised by those who defend the ideal of value-free science. We will examine why these criticisms are unconvincing also by presenting an example: the controversy over climate change, which also has the advantage of showing an unexpected link between this chapter and the previous one. Furthermore, in the last two sections we will see why constructivist concepts of risk must equally be rejected.


Climate sensitivity Conceptual frameworks Consensus in science Constructivism Evidence (and total e.) Experts (scientific e.) Incommensurability Reasonable doubt Relevance judgments (see evidence) Risk (risky decisions, cultural theory of risk) Statistics (Bayesian s., classical s.) Vajont dam Value-free science 


  1. Achistein, P. (1983). The nature of explanation. New York/Oxford: Oxford University Press.Google Scholar
  2. Adams, J. (1995). Risk. London: Routledge.Google Scholar
  3. Barrotta, P. (1998). La dialettica scientifica. Per un nuovo razionalismo critico. Turin: UTET-libreria.Google Scholar
  4. Barrotta P. (2000). Scientific dialectics in action. The case of Joseph Priestley, In P. Machamer, A. Baltas, & M. Pera (Eds.), Scientific controversies (Vol. 2000, pp. 154–176). Oxford: Oxford University Press.Google Scholar
  5. Barrotta, P. (2011). James Lovelock, Gaia Theory, and the rejection of fact/value dualism. Environmental Philosophy, 8(2), 95–113.CrossRefGoogle Scholar
  6. Betz, G. (2013). In defence of the value free ideal. European Journal for Philosophy of Science, 3, 207–220.CrossRefGoogle Scholar
  7. Bodmer, W. (1985). The public understanding of science. London: The Royal Society.Google Scholar
  8. Bovens, L., & Hartmann, S. (2003). Bayesian epistemology. Oxford: Oxford University Press.Google Scholar
  9. Carloni, G. C. (1995). Il Vajont trent’anni dopo. Esperienza di un geologo. Bologna: Clueb.Google Scholar
  10. Cartwright, N. (2008). Evidence-based policy: What’s be done about relevance? Proceedings of the 38th Oberlin Colloquium in Philosophy, Philosophical Studies, 143(1), 127–136.Google Scholar
  11. Cartwright, N., & Hardie, J. (2012). Evidence-based policy, a practical guide to doing it better. New York: Oxford University Press.CrossRefGoogle Scholar
  12. Churchman, C. W. (1948). Statistics, pragmatics, induction. Philosophy of Science, 15, 249–268.CrossRefGoogle Scholar
  13. Churchman, C. W. (1956). Science and decision making. Philosophy of Science, 22, 247–249.CrossRefGoogle Scholar
  14. Coady, D., & Corry, R. (2013). The climate change debate: An epistemic and ethical enquiry. Basingstoke: Palgrave Macmillan.CrossRefGoogle Scholar
  15. Collins, H., & Evans, R. (2002). The third wave of science studies: Studies of expertise and experience. Reprinted in Selinger, E. & Crease, R. P. (Eds.). (2006). The philosophy of expertise (pp. 39–110). New York: Columbia University Press.Google Scholar
  16. Dewey, J. (1938). Logic: The theory of inquiry. In Dewey (1969–1991). The collected works. In J. A. Boydstone (Ed.), Carbondale: Southern Illinois University Press. (The later works, Vol. 12).Google Scholar
  17. Dorato, M. (2004). Epistemic and nonepistemic values in science. In P. Machamer & G. Wolters (Eds.), Science, values, and objectivity (pp. 52–77). Pittsburgh: University of Pittsburgh Press.Google Scholar
  18. Douglas, H. (2000). Inductive risk and values in science. Philosophy of Science, 67, 559–579.CrossRefGoogle Scholar
  19. Douglas, H. (2009). Science, policy, and the value-free ideal. Pittsburgh: University of Pittsburgh Press.CrossRefGoogle Scholar
  20. Douglas, M. (Ed.). (1982). Essays in the sociology of perception. London: Routledge and Kegan Paul.Google Scholar
  21. Douglas, M. (Ed.). (1992). Risk and blame. Essays in cultural theory. London/New York: Routledge.Google Scholar
  22. Douglas, M., & Wildavsky, A. (1983). Risk and culture. Berkeley: University of California Press.Google Scholar
  23. Douglas, M. (Ed.). (1996). Natural symbols. Explorations in cosmology. London/New York: Routledge.Google Scholar
  24. Earman, J. (1992). Bayes or bust? Cambridge: MIT Press.Google Scholar
  25. Elliott, K. (2011). Is a little pollution good for you? Incorporating societal values, environmental research. London: Oxford University Press.CrossRefGoogle Scholar
  26. Gattei, S. (2008). Thomas Kuhn’s “linguistic turn” and the legacy of logical emprcim. Aldershot: Ashgate.Google Scholar
  27. Gervasoni, A. (1969). Il Vajont e le responsabilità dei manager. Milano: Bramante editrice.Google Scholar
  28. Hansen, J. (2007). Scientific reticence and the sea level rise. Environmental Research Letters.
  29. Hansen, J. (2009). Storms of my grandchildren. The truth about the coming climate catastrophe and our last chance to save humanity. London: Bloomsbury Publishing.Google Scholar
  30. Hempel, C. G. (1965). Science and human values. In Aspects of scientific explanation (pp. 81–96). New York: The Free Press.Google Scholar
  31. Hempel, C. G. (1981). Turns in the evolution of the problem of induction. Synthese, 46, 389–404.CrossRefGoogle Scholar
  32. Howson, C., & Urbach, P. (2005). Scientific reasoning: The Bayesian approach (3rd ed.). Chicago: Open Court.Google Scholar
  33. James, W. (1896). The will to believe. In The will to believe and other essays in popular philosophy and human immortality. New York 1956: Dover Publications.Google Scholar
  34. Jeffrey, R. (1956). Valuation and acceptance of scientific hypotheses. Philosophy of Science, 22, 197–217.Google Scholar
  35. John, S. (2015). The example of the IPCC does not vindicate the value free ideal: A reply to Gregor Betz. European Journal of Philosophy of Science, 5, 1–13.CrossRefGoogle Scholar
  36. Kitcher, P. (2011). Science in a democratic society. New York: Prometheus Books.Google Scholar
  37. Kordig, C. (1971). The justification of scientific change. Dordrecht: Reidel.Google Scholar
  38. Kuhn, T. (1977). Objectivity, value judgment, and theory choice. In The essential tension (pp. 320–339). Chicago/London: The University of Chicago Press.Google Scholar
  39. Lacey, H. (2005). Is science value free? Values and scientific understanding (1st ed., 1999). London/New York: Routledge.Google Scholar
  40. Levi, I. (1960). Must the scientist make value judgements? Journal of Philosophy, 57, 345–357.CrossRefGoogle Scholar
  41. Lomborg, B. (2007). Cool it. The skeptical environmentalist’s guide to global warming. London: Marshall Cavendish Limited.Google Scholar
  42. Lovelock, J. (2009). The vanishing face of Gaia. London/New York: Penguin Books.Google Scholar
  43. McMullin, E. (1983). Values in science. In P. D. Asquith & T. Nickles (Eds.), Proceedings of the 1982 biennial meeting of the Philosophy of Science Association (Vol. 1, pp. 3–28). East Lansing: Philosophy of Science Association.Google Scholar
  44. Merlin, T. (2001). Sulla pelle viva. Come si costruisce una catastrofe. Il caso del Vajont (1st ed., 1983). Verona: Cierre edizioni.Google Scholar
  45. Mitchell, S. (2004). The prescribed and proscribed values in science policy. In P. Machamer & G. Wolters (Eds.), Science, values, and objectivity (pp. 245–255). Pittsburgh: University of Pittsburgh Press.Google Scholar
  46. Oreskes, N., & Conway, E. M. (2010). Merchants of doubt. How a handful of scientists obscured the truth on issues from tobacco smoke to global warming. London: Bloomsbury.Google Scholar
  47. Palmieri, N. W. (1997). Vajont, Stava, Agent Orange. Il costo di scelte irresponsabili. Padova: CEDAM.Google Scholar
  48. Parker, W. S. (2011). When climate models agree: The significance of robust model predictions. Philosophy of Science, 78(4), 579–600.CrossRefGoogle Scholar
  49. Peirce, C. S. (1877). The fixation of belief. In Peirce (1931–5). Collected papers (C. Hartshorne & P. Weiss Eds.). Cambridge, MA: Belknap Press. (Vol. V, pp. 223–247).Google Scholar
  50. Phillips, L. D. (1973). Bayesian statistics for social scientists. London: Nelson and Sons.Google Scholar
  51. Press, S. J., & Tanur, J. M. (2001). The subjectivity of scientists and the Bayesian approach. New York: Wiley.CrossRefGoogle Scholar
  52. Preston, J. (1997). Feyerabend. Philosophy, science and society. Cambridge: Polity Press.Google Scholar
  53. Putnam, H. (1994). The diversity of the sciences. In J. Conant (Ed.), Words and life (pp. 463–480). Cambridge, MA: Harvard University Press.Google Scholar
  54. Rhodes, R. (1986). The making of atomic bomb. New York: Touchstone Books.Google Scholar
  55. Rudner, R. (1953). The scientist qua scientist makes value judgments. Philosophy of Science, 20, 1–6.CrossRefGoogle Scholar
  56. Schwarz, M., & Thompson, M. (1990). Divided we stand. Redefining politics, technology and social choice. New York: Harvester Wheatsheaf.Google Scholar
  57. Semenza, E. (2005). La storia del Vaiont raccontata dal geologo che ha scoperto la frana (1st ed., 2001). Ferrara: K-flah Editore.Google Scholar
  58. Shrader-Frechette, K. S. (1991). Risk and rationality. Berkeley: University of California Press.Google Scholar
  59. Solomon, S., et al. (Eds.). (2007). Technical summary. Working Group I. Fourth Assessment Report “The Physical Science Basis”. Cambridge/New York: Cambridge University Press.Google Scholar
  60. Steele, K. (2012). The scientist qua policy advisor makes value judgments. Philosophy of Science, 79(5), 893–904.CrossRefGoogle Scholar
  61. Winsberg, E. (2012). Values and uncertainties in the predictions of global climate models. Kennedy Institute of Ethics Journal, 22(2), 111–137.CrossRefGoogle Scholar
  62. Wynne, B. (1996). May the sheep safely graze? A reflexive view of the expert-lay knowledge divide. In S. Lash, B. Szerszynski, & B. Wynne (Eds.), Risk, Environment & Modernity (pp. 44–83). London: Sage Publications.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Pierluigi Barrotta
    • 1
  1. 1.Department of Civilizations and Forms of KnowledgeUniversity of PisaPisaItaly

Personalised recommendations