Advertisement

Interaction Between Nutrition and Metabolism

  • Stella Maria Barrouin-Melo
  • Yadira Alejandra Morejón Terán
  • Johanna Anturaniemi
  • Anna Katrina Hielm-Björkman
Chapter
Part of the Experientia Supplementum book series (EXS, volume 109)

Abstract

Diet plays a fundamental role in the nutritional status, in the homeostasis and in the capacity of an individual to adapt to the environment. A proper or an inadequate nutrition has an impact on the persistence, remission and incidence of various conditions, including the infectious diseases. Consequently, nutrition has a crucial importance on survival rates and health recovery of individuals or even populations around the globe. The synergistic relationship between nutritional needs and infectious processes has been demonstrated conclusively in diverse studies. This chapter will discuss the most important nutrients, their most common natural dietary sources, the different digestive processes for each one as well as the absorption, transport, storage, excretion and function of each of the nutrients within the organism. We also go through some concepts on the interaction between nutrition and the immune system, as well as examples on the influence of nutrition or specific nutrients on some infectious diseases, and their influence on the gene expression.

Keywords

Metabolism Infection Disease Nutrient Immunonutrition Nutrigenetic 

Notes

Acknowledgements

We thank Denise Sara Key for proofreading the English of this manuscript.

References

  1. Abbaspour N, Hurrell R, Kelishadi R (2014) Review on iron and its importance for human health. J Res Med Sci 19:164–174PubMedPubMedCentralGoogle Scholar
  2. Abrams SA, Sidbury JB, Muenzer J et al (1991) Stable isotopic measurement of endogenous fecal calcium excretion in children. J Pediatr Gastroenterol Nutr 12:469–473PubMedCrossRefGoogle Scholar
  3. Abumrad NA, Davidson NO (2012) Role of the gut in lipid homeostasis. Physiol Rev 92:1061–1085.  https://doi.org/10.1152/physrev.00019.2011PubMedPubMedCentralCrossRefGoogle Scholar
  4. Adinolfi LE, Rinaldi L, Guerrera B et al (2016) NAFLD and NASH in HCV infection: prevalence and significance in hepatic and extrahepatic manifestations. Int J Mol Sci.  https://doi.org/10.3390/ijms17060803
  5. Afacan NJ, Fjell CD, Hancock REW (2012) A systems biology approach to nutritional immunology? Focus on innate immunity. Mol Aspects Med 33:14–25.  https://doi.org/10.1016/j.mam.2011.10.013PubMedCrossRefGoogle Scholar
  6. Afify M, Hamza AH, Alomari RA (2017) Correlation between serum cytokines, interferons, and liver functions in hepatitis C virus patients. J Interferon Cytokine Res 37:32–38.  https://doi.org/10.1089/jir.2016.0044PubMedCrossRefGoogle Scholar
  7. Ahad F, Ganie SA (2010) Iodine, iodine metabolism and iodine deficiency disorders revisited. Indian J Endocrinol Metab 14:13–17PubMedPubMedCentralGoogle Scholar
  8. Akoh CC, Min DB (2008) Food lipids: chemistry, nutrition, and biotechnology. CRC Press/Taylor & Francis Group, Boca Raton, FLCrossRefGoogle Scholar
  9. Albahrani AA, Greaves RF (2016) Fat-soluble vitamins: clinical indications and current challenges for chromatographic measurement. Clin Biochem Rev 37:27–47PubMedPubMedCentralGoogle Scholar
  10. Alberts B, Johnson A, Lewis J et al (2002a) Ion channels and the electrical properties of membranes. In: Molecular biology of the cell. Garland Science, New YorkGoogle Scholar
  11. Alberts B, Johnson A, Lewis J et al (2002b) Carrier proteins and active membrane transport. In: Molecular biology of the cell. Garland Science, New YorkGoogle Scholar
  12. Alexander JW (1998) Immunonutrition: the role of omega-3 fatty acids. Nutrition 14:627–633PubMedCrossRefGoogle Scholar
  13. Ali SA, Hill DR (2003) Giardia intestinalis. Curr Opin Infect Dis 16:453–460.  https://doi.org/10.1097/01.qco.0000092817.64370.abPubMedCrossRefGoogle Scholar
  14. Alvar J, Yactayo S, Bern C (2006) Leishmaniasis and poverty. Trends Parasitol 22:552–557.  https://doi.org/10.1016/j.pt.2006.09.004PubMedCrossRefGoogle Scholar
  15. Alvarado-Esquivel C, Sánchez-Anguiano LF, Hernández-Tinoco J et al (2016) Leptospira exposure and patients with liver diseases: a case-control seroprevalence study. Int J Biomed Sci 12:48–52PubMedPubMedCentralGoogle Scholar
  16. Alvarez-Curto E, Milligan G (2016) Metabolism meets immunity: the role of free fatty acid receptors in the immune system. Biochem Pharmacol 114:3–13.  https://doi.org/10.1016/j.bcp.2016.03.017PubMedCrossRefGoogle Scholar
  17. Anderson JJB (2003) Phosphorus|Physiology. In: Encyclopedia of food sciences and nutrition. Elsevier, London, pp 4539–4546CrossRefGoogle Scholar
  18. Anderson RA, Bryden NA, Polansky MM (1992) Dietary chromium intake. Freely chosen diets, institutional diet, and individual foods. Biol Trace Elem Res 32:117–121PubMedCrossRefGoogle Scholar
  19. de Andrade JAB, Haapalainen EF, Fagundes-Neto U (2011) Enteroaggregative Escherichia coli as a cause of persistent diarrhea: an experimental model using light microscopy. Rev Paul Pediatr 29:60–66.  https://doi.org/10.1590/S0103-05822011000100010CrossRefGoogle Scholar
  20. Andreassi M, Forleo P, Dilohjo A et al (1997) Efficacy of?-Linolenic acid in the treatment of patients with atopic dermatitis. J Int Med Res 25:266–274.  https://doi.org/10.1177/030006059702500504PubMedCrossRefGoogle Scholar
  21. Andreone P, Fiorino S, Cursaro C et al (2001) Vitamin E as treatment for chronic hepatitis B: results of a randomized controlled pilot trial. Antiviral Res 49:75–81PubMedCrossRefGoogle Scholar
  22. Anstead GM, Chandrasekar B, Zhao W et al (2001) Malnutrition alters the innate immune response and increases early visceralization following Leishmania donovani infection. Infect Immun 69:4709–4718.  https://doi.org/10.1128/IAI.69.8.4709-4718.2001PubMedPubMedCentralCrossRefGoogle Scholar
  23. Aoto J, Nam CI, Poon MM et al (2008) Synaptic signaling by all-trans retinoic acid in homeostatic synaptic plasticity. Neuron 60:308–320.  https://doi.org/10.1016/j.neuron.2008.08.012PubMedPubMedCentralCrossRefGoogle Scholar
  24. Arain SQ, Talpur FN, Channa NA et al (2017) Serum lipid profile as a marker of liver impairment in hepatitis B Cirrhosis patients. Lipids Health Dis 16:51.  https://doi.org/10.1186/s12944-017-0437-2PubMedPubMedCentralCrossRefGoogle Scholar
  25. Argilés JM, Campos N, Lopez-Pedrosa JM et al (2016) Skeletal muscle regulates metabolism via interorgan crosstalk: roles in health and disease. J Am Med Dir Assoc 17:789–796.  https://doi.org/10.1016/j.jamda.2016.04.019PubMedCrossRefGoogle Scholar
  26. Azzi A, Meydani SN, Meydani M, Zingg JM (2016) The rise, the fall and the renaissance of vitamin E. Arch Biochem Biophys 595:100–108.  https://doi.org/10.1016/j.abb.2015.11.010PubMedCrossRefGoogle Scholar
  27. Baba CS, Makharia GK, Mathur P et al (2006) Chronic diarrhea and malabsorption caused by Leishmania donovani. Indian J Gastroenterol 25:309–310PubMedGoogle Scholar
  28. Bachmann MF (2012) Taurine: energy drink for T cells. Eur J Immunol 42:819–821.  https://doi.org/10.1002/eji.201242450PubMedCrossRefGoogle Scholar
  29. Badaró R, Carvalho EM, Rocha H et al (1986) Leishmania donovani: an opportunistic microbe associated with progressive disease in three immunocompromised patients. Lancet (London, England) 1:647–649.  https://doi.org/10.1590/S0037-86821988000400001CrossRefGoogle Scholar
  30. Baek M, Chung H-E, Yu J et al (2012) Pharmacokinetics, tissue distribution, and excretion of zinc oxide nanoparticles. Int J Nanomedicine 7:3081–3097.  https://doi.org/10.2147/IJN.S32593PubMedPubMedCentralGoogle Scholar
  31. Bai J, Xun P, Morris S et al (2015) Chromium exposure and incidence of metabolic syndrome among American young adults over a 23-year follow-up: the CARDIA trace element study. Sci Rep 5:15606.  https://doi.org/10.1038/srep15606PubMedPubMedCentralCrossRefGoogle Scholar
  32. Bailey LB (2007) Folic acid. In: Zempleni J (ed) Handbook of Vitamins, 4th edn. Taylor & Francis, Boca Raton, FL, pp 412–385Google Scholar
  33. Balcells ME, García P, Tiznado C et al (2017) Association of vitamin D deficiency, season of the year, and latent tuberculosis infection among household contacts. PLoS One 12:e0175400.  https://doi.org/10.1371/journal.pone.0175400PubMedPubMedCentralCrossRefGoogle Scholar
  34. Barbuddhe SB, Chakraborty T (2009) Listeria as an enteroinvasive gastrointestinal pathogen. Curr Top Microbiol Immunol 337:173–195.  https://doi.org/10.1007/978-3-642-01846-6_6PubMedGoogle Scholar
  35. Bates CJ (1998) Niacin. In: Encyclopedia of human nutrition. Elsevier, Oxford, pp 253–259CrossRefGoogle Scholar
  36. Bates CJ (2005a) Pantothenic acid. In: Encyclopedia of human nutrition. Elsevier, Oxford, pp 467–472CrossRefGoogle Scholar
  37. Bates CJ (2003) Folic acid|Physiology. In: Encyclopedia of food sciences and nutrition. Academic Press, London, pp 2564–2569CrossRefGoogle Scholar
  38. Bates CJ (2005b) Vitamin K. In: Encyclopedia of human nutrition. Elsevier, Oxford, pp 398–405CrossRefGoogle Scholar
  39. Bayer P (2013) Ingesta: digestión, absorción, transporte y excreción de nutrientes. In: Mahan K, Escott-Stump S, Raymond J (eds) Krause’s food and the nutrition care process, 13th edn. Elsevier España, S.L, España, pp 18–12Google Scholar
  40. Bayraktar Y, Bayraktar M, Gurakar A et al (1997) A comparison of the prevalence of autoantibodies in individuals with chronic hepatitis C and those with autoimmune hepatitis: the role of interferon in the development of autoimmune diseases. Hepatogastroenterology 44:417–425PubMedGoogle Scholar
  41. Bechgaard H, Jespersen S (1977) GI absorption of niacin in humans. J Pharm Sci 66:871–872PubMedCrossRefGoogle Scholar
  42. Beisiegel U (1998) Lipoprotein metabolism. Eur Heart J 19(Suppl A):A20–A23PubMedGoogle Scholar
  43. Bellamy R (1999) The natural resistance-associated macrophage protein and susceptibility to intracellular pathogens. Microbes Infect 1:23–27PubMedCrossRefGoogle Scholar
  44. Belluzi A, Miglio F (1998) n-3 Fatty acids in the treatment of Crohn’s disease. In: Kremer JM (ed) Medicinal fatty acids in inflammation. Birkhauser, Verlag Basel, pp 101–191Google Scholar
  45. Bender DA (2003a) Niacin|Physiology. In: Encyclopedia of food sciences and nutrition. Elsevier, London, pp 4119–4128CrossRefGoogle Scholar
  46. Bender DA (2005) Vitamin B6. In: Encyclopedia of human nutrition. Elsevier, Oxford, pp 359–367CrossRefGoogle Scholar
  47. Bender DA (2003b) Vitamin B6|Physiology. In: Encyclopedia of food sciences and nutrition. Elsevier, London, pp 6020–6032CrossRefGoogle Scholar
  48. Benkovic SJ, Hammes-Schiffer S (2003) A perspective on enzyme catalysis. Science 301:1196–1202.  https://doi.org/10.1126/science.1085515PubMedCrossRefGoogle Scholar
  49. Bentley R, Meganathan R (1982) Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiol Rev 46:241–280PubMedPubMedCentralGoogle Scholar
  50. Benzie IFF (2003) Evolution of dietary antioxidants. Comp Biochem Physiol A Mol Integr Physiol 136:113–126PubMedCrossRefGoogle Scholar
  51. Berdanier CD, Zempleni J (2009) Advanced nutrition: macronutrients, micronutrients, and metabolism. CRC Press, Boca Raton, FLGoogle Scholar
  52. Berg A, Rooyackers O, Bellander B-M, Wernerman J (2013) Whole body protein kinetics during hypocaloric and normocaloric feeding in critically ill patients. Crit Care 17:R158.  https://doi.org/10.1186/cc12837PubMedPubMedCentralCrossRefGoogle Scholar
  53. Berg JM, Tymoczko JL, Stryer L (2002a) Monosaccharides are aldehydes or ketones with multiple hydroxyl groups. In: Freeman WH (ed) Biochemistry. W H Freeman, New YorkGoogle Scholar
  54. Berg JM, Tymoczko JL, Stryer L (2002b) The citric acid cycle oxidizes two-carbon units. In: Biochemistry. W H Freeman, New YorkGoogle Scholar
  55. Berg JM, Tymoczko JL, Stryer L (2002c) Metabolism consist of highly interconnected pathways. In: Biochemistry. W H Freeman, New YorkGoogle Scholar
  56. Bettendorff L, Wins P (2013) Biochemistry of thiamine and thiamine phosphate compounds. In: Encyclopedia of biological chemistry. Liège, Belgium, pp 202–209CrossRefGoogle Scholar
  57. Bhargava A, Benedetti A, Oxlade O et al (2014) Undernutrition and the incidence of tuberculosis in India: national and subnational estimates of the population-attributable fraction related to undernutrition. Natl Med J India 27:128–133PubMedGoogle Scholar
  58. Bikle DD (2014) Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol 21:319–329.  https://doi.org/10.1016/j.chembiol.2013.12.016PubMedPubMedCentralCrossRefGoogle Scholar
  59. Birben E, Sahiner UM, Sackesen C et al (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5:9–19.  https://doi.org/10.1097/WOX.0b013e3182439613PubMedPubMedCentralCrossRefGoogle Scholar
  60. Bistrian BR (1979) A simple technique to estimate severity of stress. Surg Gynecol Obstet 148:675–678PubMedGoogle Scholar
  61. Bitsch R (2003) THIAMIN|Physiology. In: Encyclopedia of food sciences and nutrition. Elsevier, London, pp 5772–5780CrossRefGoogle Scholar
  62. Bondarenko VM, Lykova EA, Matsulevich TV (2006) Microecological aspects of small intestinal bacterial overgrowth syndrome. Zh Mikrobiol Epidemiol Immunobiol 6:57–63Google Scholar
  63. Born P (2007) Carbohydrate malabsorption in patients with non-specific abdominal complaints. World J Gastroenterol 13:5687.  https://doi.org/10.3748/wjg.v13.i43.5687PubMedPubMedCentralCrossRefGoogle Scholar
  64. Bou Ghanem EN, Clark S, Du X et al (2015) The α-tocopherol form of vitamin E reverses age-associated susceptibility to Streptococcus pneumoniae lung infection by modulating pulmonary neutrophil recruitment. J Immunol 194:1090–1099.  https://doi.org/10.4049/jimmunol.1402401PubMedCrossRefGoogle Scholar
  65. Bou Ghanem EN, Lee JN, Joma BH et al (2017) The alpha-tocopherol form of Vitamin E boosts elastase activity of human PMNs and their ability to kill Streptococcus pneumoniae. Front Cell Infect Microbiol 7:161.  https://doi.org/10.3389/fcimb.2017.00161PubMedPubMedCentralCrossRefGoogle Scholar
  66. Bouamama S, Merzouk H, Medjdoub A et al (2017) Effects of exogenous vitamins A, C, and E and NADH supplementation on proliferation, cytokines release, and cell redox status of lymphocytes from healthy aged subjects. Appl Physiol Nutr Metab 42:579–587.  https://doi.org/10.1139/apnm-2016-0201PubMedCrossRefGoogle Scholar
  67. Bouillon R, Verstuyf A, Mathieu C et al (2006) Vitamin D resistance. Best Pract Res Clin Endocrinol Metab 20:627–645.  https://doi.org/10.1016/j.beem.2006.09.008PubMedCrossRefGoogle Scholar
  68. Boullata JI (2009) An introduction to drug–nutrient interactions. In: Handbook of drug-nutrient interactions. Humana Press, Totowa, NJ, pp 3–26CrossRefGoogle Scholar
  69. Bourquin F, Capitani G, Grütter MG (2011) PLP-dependent enzymes as entry and exit gates of sphingolipid metabolism. Protein Sci 20:1492–1508.  https://doi.org/10.1002/pro.679PubMedPubMedCentralCrossRefGoogle Scholar
  70. Bowrey DJ, Morris-Stiff GJ, Puntis MCA (1999) Selenium deficiency and chronic pancreatitis: disease mechanism and potential for therapy. HPB Surg 11:207–216.  https://doi.org/10.1155/1999/97140PubMedPubMedCentralCrossRefGoogle Scholar
  71. Brasitus TA (1983) Parasites and malabsorption. Clin Gastroenterol 12:495–510PubMedGoogle Scholar
  72. Brenner M, Laragione T, Gulko PS (2017) Short-term low-magnesium diet reduces autoimmune arthritis severity and synovial tissue gene expression. Physiol Genomics 49:238–242.  https://doi.org/10.1152/physiolgenomics.00003.2017PubMedCrossRefGoogle Scholar
  73. Brigelius-Flohé R, Traber MG (1999) Vitamin E: function and metabolism. FASEB J 13:1145–1155PubMedCrossRefGoogle Scholar
  74. Britton AA, Cotzias GC (1966) Dependence of manganese turnover on intake. Am J Physiol 211:203–206PubMedGoogle Scholar
  75. Broadhurst CL (1997) Balanced intakes of natural triglycerides for optimum nutrition: an evolutionary and phytochemical perspective. Med Hypotheses 49:247–261PubMedCrossRefGoogle Scholar
  76. Brophy MB, Nolan EM (2015) Manganese and microbial pathogenesis: sequestration by the Mammalian immune system and utilization by microorganisms. ACS Chem Biol 10:641–651.  https://doi.org/10.1021/cb500792bPubMedPubMedCentralCrossRefGoogle Scholar
  77. Brosnan JT, Brosnan ME (2006) The sulfur-containing amino acids: an overview. J Nutr 136:1636S–1640SPubMedCrossRefGoogle Scholar
  78. Brozmanová J (2011) Selenium and cancer: from prevention to treatment. Klin Onkol 24:171–179PubMedGoogle Scholar
  79. Brune D, Kjaerheim A, Paulsen G, Beltesbrekke H (1980) Pulmonary deposition following inhalation of chromium-cobalt grinding dust in rats and distribution in other tissues. Eur J Oral Sci 88:543–551.  https://doi.org/10.1111/j.1600-0722.1980.tb01265.xCrossRefGoogle Scholar
  80. Burke P, Needham M, Jackson BR et al (2016) Outbreak of foodborne botulism associated with improperly Jarred Pesto--Ohio and California, 2014. MMWR Morb Mortal Wkly Rep 65:175–177.  https://doi.org/10.15585/mmwr.mm6507a2PubMedCrossRefGoogle Scholar
  81. Calder P (2013a) Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? Br J Clin Pharmacol 75:645–662.  https://doi.org/10.1111/j.1365-2125.2012.04374.xPubMedPubMedCentralCrossRefGoogle Scholar
  82. Calder P (2013b) n-3 fatty acids, inflammation and immunity: new mechanisms to explain old actions. Proc Nutr Soc 72:326–336.  https://doi.org/10.1017/S0029665113001031PubMedCrossRefGoogle Scholar
  83. Campbell LA, Rosenfeld ME (2015) Infection and atherosclerosis development. Arch Med Res 46:339–350.  https://doi.org/10.1016/j.arcmed.2015.05.006PubMedPubMedCentralCrossRefGoogle Scholar
  84. Cancela ML, Conceição N, Laizé V (2012) Gla-rich protein, a new player in tissue calcification? Adv Nutr 3:174–181.  https://doi.org/10.3945/an.111.001685PubMedPubMedCentralCrossRefGoogle Scholar
  85. Card DJ, Gorska R, Cutler J, Harrington DJ (2014) Vitamin K metabolism: current knowledge and future research. Mol Nutr Food Res 58:1590–1600.  https://doi.org/10.1002/mnfr.201300683PubMedCrossRefGoogle Scholar
  86. Carr AC, Frei B (1999) Toward a new recommended dietary allowance for vitamin C based on antioxidant and health effects in humans. Am J Clin Nutr 69:1086–1107PubMedCrossRefGoogle Scholar
  87. Carruthers A, DeZutter J, Ganguly A, Devaskar SU (2009) Will the original glucose transporter isoform please stand up! Am J Physiol Endocrinol Metab 297:E836–E848.  https://doi.org/10.1152/ajpendo.00496.2009PubMedPubMedCentralCrossRefGoogle Scholar
  88. Cases N, Aguiló A, Tauler P et al (2005) Differential response of plasma and immune cell’s vitamin E levels to physical activity and antioxidant vitamin supplementation. Eur J Clin Nutr 59:781–788.  https://doi.org/10.1038/sj.ejcn.1602143PubMedCrossRefGoogle Scholar
  89. Cassani B, Villablanca EJ, De Calisto J et al (2012) Vitamin A and immune regulation: role of retinoic acid in gut-associated dendritic cell education, immune protection and tolerance. Mol Aspects Med 33:63–76.  https://doi.org/10.1016/j.mam.2011.11.001PubMedCrossRefGoogle Scholar
  90. Cassani F, Cataleta M, Valentini P et al (1997) Serum autoantibodies in chronic hepatitis C: comparison with autoimmune hepatitis and impact on the disease profile. Hepatology 26:561–566.  https://doi.org/10.1002/hep.510260305PubMedCrossRefGoogle Scholar
  91. Cegielski JP, McMurray DN (2004) The relationship between malnutrition and tuberculosis: evidence from studies in humans and experimental animals. Int J Tuberc Lung Dis 8:286–298PubMedGoogle Scholar
  92. Cellier MF, Courville P, Campion C (2007) Nramp1 phagocyte intracellular metal withdrawal defense. Microbes Infect 9:1662–1670.  https://doi.org/10.1016/j.micinf.2007.09.006PubMedCrossRefGoogle Scholar
  93. Cerf BJ, Jones TC, Badaro R et al (1987) Malnutrition as a risk factor for severe visceral leishmaniasis. J Infect Dis 156:1030–1033PubMedCrossRefGoogle Scholar
  94. Chan DL (2008) The role of nutrients in modulating disease. J Small Anim Pract 49:266–271.  https://doi.org/10.1111/j.1748-5827.2008.00589.xPubMedCrossRefGoogle Scholar
  95. Chan JC (1983) Acid-base disorders and the kidney. Adv Pediatr 30:401–471PubMedGoogle Scholar
  96. Chandra S, Chandra RK (1986) Nutrition, immune response, and outcome. Prog Food Nutr Sci 10:1–65PubMedGoogle Scholar
  97. Chandrasekharan N (1999) Changing concepts in lipid nutrition in health and disease. Med J Malaysia 54:408–427. quiz 428PubMedGoogle Scholar
  98. Chatterjee IB, Majumder AK, Nandi BK, Subramanian N (1975) Synthesis and some major functions of vitamin C in animals. Ann N Y Acad Sci 258:24–47PubMedCrossRefGoogle Scholar
  99. Chawla J, Kvarnberg D (2014) Hydrosoluble vitamins. Handb Clin Neurol 120:891–914.  https://doi.org/10.1016/B978-0-7020-4087-0.00059-0PubMedCrossRefGoogle Scholar
  100. Chen L-X, Koyner JL (2015) Biomarkers in acute kidney injury. Crit Care Clin 31:633–648.  https://doi.org/10.1016/j.ccc.2015.06.002PubMedCrossRefGoogle Scholar
  101. Chen N, Onisko B, Napoli JL (2008) The nuclear transcription factor RARalpha associates with neuronal RNA granules and suppresses translation. J Biol Chem 283:20841–20847.  https://doi.org/10.1074/jbc.M802314200PubMedPubMedCentralCrossRefGoogle Scholar
  102. Chen W, Chen G (2014) The roles of vitamin A in the regulation of carbohydrate, lipid, and protein metabolism. J Clin Med 3:453–479.  https://doi.org/10.3390/jcm3020453PubMedPubMedCentralCrossRefGoogle Scholar
  103. Chen Y-C, Prabhu K, Mastro A (2013) Is selenium a potential treatment for cancer metastasis? Nutrients 5:1149–1168.  https://doi.org/10.3390/nu5041149PubMedPubMedCentralCrossRefGoogle Scholar
  104. Chilton FH, Murphy RC, Wilson BA et al (2014) Diet-gene interactions and PUFA metabolism: a potential contributor to health disparities and human diseases. Nutrients 6:1993–2022.  https://doi.org/10.3390/nu6051993PubMedPubMedCentralCrossRefGoogle Scholar
  105. Chirumbolo S, Bjørklund G, Sboarina A, Vella A (2017) The role of vitamin D in the immune system as a pro-survival molecule. Clin Ther 39(5):894–916.  https://doi.org/10.1016/j.clinthera.2017.03.021PubMedCrossRefGoogle Scholar
  106. Choe E, Min DB (2009) Mechanisms of antioxidants in the oxidation of foods. Compr Rev Food Sci Food Saf 8:345–358.  https://doi.org/10.1111/j.1541-4337.2009.00085.xCrossRefGoogle Scholar
  107. Chow O, Barbul A (2014) Immunonutrition: role in wound healing and tissue regeneration. Adv Wound Care 3:46–53.  https://doi.org/10.1089/wound.2012.0415CrossRefGoogle Scholar
  108. Christakos S, Ajibade DV, Dhawan P et al (2010) Vitamin D: metabolism. Endocrinol Metab Clin North Am 39:243–253.  https://doi.org/10.1016/j.ecl.2010.02.002PubMedPubMedCentralCrossRefGoogle Scholar
  109. Church J, Maitland K (2014) Invasive bacterial co-infection in African children with Plasmodium falciparum malaria: a systematic review. BMC Med 12:31.  https://doi.org/10.1186/1741-7015-12-31PubMedPubMedCentralCrossRefGoogle Scholar
  110. Clarkson PM, Thompson HS (2000) Antioxidants: what role do they play in physical activity and health? Am J Clin Nutr 72:637S–646SPubMedCrossRefGoogle Scholar
  111. Cobalt Development Institute (2006) Cobalt in the environment. Cobalt Development Institute, EnglandGoogle Scholar
  112. Cohen AL, McMorrow M, Walaza S et al (2015) Potential impact of co-infections and co-morbidities prevalent in Africa on influenza severity and frequency: a systematic review. PLoS One 10:e0128580.  https://doi.org/10.1371/journal.pone.0128580PubMedPubMedCentralCrossRefGoogle Scholar
  113. Cook JD, Penner-Hahn JE, Stemmler TL (2008) Structure and dynamics of metalloproteins in live cells. Methods Cell Biol 90:199–216PubMedPubMedCentralCrossRefGoogle Scholar
  114. Cota GF, Gomes LI, Pinto BF et al (2012) Dyarrheal syndrome in a patient co-infected with Leishmania infantum and Schistosoma mansoni. Case Rep Med 2012:1–4.  https://doi.org/10.1155/2012/240512CrossRefGoogle Scholar
  115. Cousin B, Casteilla L, Laharrague P et al (2016) Immuno-metabolism and adipose tissue: the key role of hematopoietic stem cells. Biochimie 124:21–26.  https://doi.org/10.1016/j.biochi.2015.06.012PubMedCrossRefGoogle Scholar
  116. Cousins RJ (2010) Gastrointestinal factors influencing zinc absorption and homeostasis. Int J Vitam Nutr Res 80:243–248.  https://doi.org/10.1024/0300-9831/a000030PubMedPubMedCentralCrossRefGoogle Scholar
  117. Coutu DL, Wu JH, Monette A et al (2008) Periostin, a member of a novel family of vitamin K-dependent proteins, is expressed by mesenchymal stromal cells. J Biol Chem 283:17991–18001.  https://doi.org/10.1074/jbc.M708029200PubMedCrossRefGoogle Scholar
  118. Craig W, Beck L (1999) Phytochemicals: health protective effects. Can J Diet Pract Res 60:78–84PubMedGoogle Scholar
  119. Cummings JH, Stephen AM (2007) Carbohydrate terminology and classification. Eur J Clin Nutr 61:S5–S18.  https://doi.org/10.1038/sj.ejcn.1602936PubMedCrossRefGoogle Scholar
  120. Cunha DF, Lara VC, Monteiro JP et al (2001) Growth retardation in children with positive intradermic reaction for leishmaniasis: preliminary results. Rev Soc Bras Med Trop 34:25–27PubMedCrossRefGoogle Scholar
  121. Cunningham-Rundles S, McNeeley DF, Moon A (2005) Mechanisms of nutrient modulation of the immune response. J Allergy Clin Immunol 115:1119–1128.; quiz 1129.  https://doi.org/10.1016/j.jaci.2005.04.036PubMedCrossRefGoogle Scholar
  122. Czarnewski P, Das S, Parigi SM, Villablanca EJ (2017) Retinoic acid and its role in modulating intestinal innate immunity. Nutrients 9(1):68.  https://doi.org/10.3390/nu9010068PubMedCentralCrossRefGoogle Scholar
  123. Dabrowski K (1983) Comparative aspects of protein digestion and amino acid absorption in fish and other animals. Comp Biochem Physiol A Comp Physiol 74:417–425PubMedCrossRefGoogle Scholar
  124. Dakshinamurti S, Dakshinamurti K (2007) Vitamin B6. In: Zempleni J (ed) Handbook of vitamins, 4th edn. Taylor & Francis, Boca Raton, FL, pp 360–315Google Scholar
  125. Daly S, Mills JL, Molloy AM et al (1997) Minimum effective dose of folic acid for food fortification to prevent neural-tube defects. Lancet 350:1666–1669.  https://doi.org/10.1016/S0140-6736(97)07247-4PubMedCrossRefGoogle Scholar
  126. Darling AM, Mugusi FM, Etheredge AJ et al (2017) Vitamin A and zinc supplementation among pregnant women to prevent placental malaria: a randomized, double-blind, placebo-controlled trial in Tanzania. Am J Trop Med Hyg 96:826–834.  https://doi.org/10.4269/ajtmh.16-0599PubMedPubMedCentralGoogle Scholar
  127. Daruwala R, Song J, Koh WS et al (1999) Cloning and functional characterization of the human sodium-dependent vitamin C transporters hSVCT1 and hSVCT2. FEBS Lett 460:480–484PubMedCrossRefGoogle Scholar
  128. Davis MY, Zhang H, Brannan LE et al (2016) Rapid change of fecal microbiome and disappearance of Clostridium difficile in a colonized infant after transition from breast milk to cow milk. Microbiome 4:53.  https://doi.org/10.1186/s40168-016-0198-6PubMedPubMedCentralCrossRefGoogle Scholar
  129. Davis TM, Brown AE, Smith CD (1993) Metabolic disturbances in Plasmodium coatneyi-infected rhesus monkeys. Int J Parasitol 23:557–563PubMedCrossRefGoogle Scholar
  130. de Haan K, Groeneveld AJ, de Geus HR et al (2014) Vitamin D deficiency as a risk factor for infection, sepsis and mortality in the critically ill: systematic review and meta-analysis. Crit Care 18:660.  https://doi.org/10.1186/s13054-014-0660-4PubMedPubMedCentralCrossRefGoogle Scholar
  131. de Luis DA, de la Fuente B, Izaola O et al (2014) Clinical effects of a hypercaloric and hyperproteic oral suplemment enhanced with W3 fatty acids and dietary fiber in postsurgical ambulatory head and neck cancer patients. Nutr Hosp 31:759–763.  https://doi.org/10.3305/nh.2015.31.2.8481PubMedGoogle Scholar
  132. de Oliveira FA, Vanessa Oliveira Silva C, Damascena NP et al (2013) High levels of soluble CD40 ligand and matrix metalloproteinase-9 in serum are associated with favorable clinical evolution in human visceral leishmaniasis. BMC Infect Dis 13:331.  https://doi.org/10.1186/1471-2334-13-331PubMedPubMedCentralCrossRefGoogle Scholar
  133. de Oliveira MR (2015) Vitamin A and retinoids as mitochondrial toxicants. Oxid Med Cell Longev 2015:1–13.  https://doi.org/10.1155/2015/140267CrossRefGoogle Scholar
  134. De Wolf BM, Zajac AM, Hoffer KA et al (2014) The effect of vitamin E supplementation on an experimental Haemonchus contortus infection in lambs. Vet Parasitol 205:140–149.  https://doi.org/10.1016/j.vetpar.2014.07.013PubMedCrossRefGoogle Scholar
  135. Delafuente JC, Prendergast JM, Modigh A (1986) Immunologic modulation by vitamin C in the elderly. Int J Immunopharmacol 8:205–211PubMedCrossRefGoogle Scholar
  136. Delgado ME, Grabinger T, Brunner T (2016) Cell death at the intestinal epithelial front line. FEBS J 283:2701–2719.  https://doi.org/10.1111/febs.13575PubMedCrossRefGoogle Scholar
  137. Dennehy PH (2000) Transmission of rotavirus and other enteric pathogens in the home. Pediatr Infect Dis J 19:S103–S105PubMedCrossRefGoogle Scholar
  138. Depeint F, Bruce WR, Shangari N et al (2006) Mitochondrial function and toxicity: role of the B vitamin family on mitochondrial energy metabolism. Chem Biol Interact 163:94–112.  https://doi.org/10.1016/j.cbi.2006.04.014PubMedCrossRefGoogle Scholar
  139. Diekman C, Malcolm K (2009) Consumer perception and insights on fats and fatty acids: knowledge on the quality of diet fat. Ann Nutr Metab 54(Suppl 1):25–32.  https://doi.org/10.1159/000220824PubMedCrossRefGoogle Scholar
  140. Dihingia A, Kalita J, Manna P (2017) Implication of a novel Gla-containing protein, Gas6 in the pathogenesis of insulin resistance, impaired glucose homeostasis, and inflammation: a review. Diabetes Res Clin Pract 128:74–82.  https://doi.org/10.1016/j.diabres.2017.03.026PubMedCrossRefGoogle Scholar
  141. Dikici B, Dagli A, Ucmak H et al (2007) Efficacy of vitamin E in children with immunotolerant-phase chronic hepatitis B infection. Pediatr Int 49:603–607.  https://doi.org/10.1111/j.1442-200X.2007.02419.xPubMedCrossRefGoogle Scholar
  142. Dillingham R, Leger P, Beauharnais C-A et al (2011) AIDS diarrhea and antiretroviral drug concentrations: a matched-pair cohort study in Port au Prince, Haiti. Am J Trop Med Hyg 84:878–882.  https://doi.org/10.4269/ajtmh.2011.10-0541PubMedPubMedCentralCrossRefGoogle Scholar
  143. DiSilvestro RA (2005) Handbook of minerals as nutritional supplements. CRC Press, Boca Raton, FLGoogle Scholar
  144. Donskey CJ (2004) The role of the intestinal tract as a reservoir and source for transmission of nosocomial pathogens. Clin Infect Dis 39:219–226.  https://doi.org/10.1086/422002PubMedCrossRefGoogle Scholar
  145. das Dôres SMC, de Paiva SAR, Campana ÁO (2001) Vitamina K: metabolismo e nutrição. Rev Nutr 14:207–218.  https://doi.org/10.1590/S1415-52732001000300007CrossRefGoogle Scholar
  146. Dou M, Ma Y, Ma AG et al (2016) Combined chromium and magnesium decreases insulin resistance more effectively than either alone. Asia Pac J Clin Nutr 25:747–753PubMedGoogle Scholar
  147. Drakesmith H, Prentice AM (2012) Hepcidin and the iron-infection axis. Science 338:768–772.  https://doi.org/10.1126/science.1224577PubMedCrossRefGoogle Scholar
  148. Drevon CA (1991) Absorption, transport and metabolism of vitamin E. Free Radic Res Commun 14:229–246PubMedCrossRefGoogle Scholar
  149. Ducros V (1992) Chromium metabolism. A literature review. Biol Trace Elem Res 32:65–77PubMedCrossRefGoogle Scholar
  150. Dunn WA, Rettura G, Seifter E, Englard S (1984) Carnitine biosynthesis from gamma-butyrobetaine and from exogenous protein-bound 6-N-trimethyl-L-lysine by the perfused guinea pig liver. Effect of ascorbate deficiency on the in situ activity of gamma-butyrobetaine hydroxylase. J Biol Chem 259:10764–10770PubMedGoogle Scholar
  151. Dye C, Williams BG (1993) Malnutrition, age and the risk of parasitic disease: visceral leishmaniasis revisited. Proceedings Biol Sci 254:33–39.  https://doi.org/10.1098/rspb.1993.0123CrossRefGoogle Scholar
  152. Ebara S (2017) Nutritional role of folate. Congenit Anom (Kyoto) 57:138–141.  https://doi.org/10.1111/cga.12233CrossRefGoogle Scholar
  153. Ebeling PR, Sandgren ME, DiMagno EP et al (1992) Evidence of an age-related decrease in intestinal responsiveness to vitamin D: relationship between serum 1,25-dihydroxyvitamin D3 and intestinal vitamin D receptor concentrations in normal women. J Clin Endocrinol Metab 75:176–182.  https://doi.org/10.1210/jcem.75.1.1320048PubMedGoogle Scholar
  154. Efron D, Barbul A (2000) Role of arginine in immunonutrition. J Gastroenterol 35(Suppl 1):20–23PubMedGoogle Scholar
  155. Elenius V, Palomares O, Waris M et al (2017) The relationship of serum vitamins A, D, E and LL-37 levels with allergic status, tonsillar virus detection and immune response. PLoS One 12:e0172350.  https://doi.org/10.1371/journal.pone.0172350PubMedPubMedCentralCrossRefGoogle Scholar
  156. Ellulu MS (2017) Obesity, cardiovascular disease, and role of vitamin C on inflammation: a review of facts and underlying mechanisms. Inflammopharmacology 25:313–328.  https://doi.org/10.1007/s10787-017-0314-7PubMedCrossRefGoogle Scholar
  157. Elmahallawy EK, Jiménez-Aranda A, Martínez AS et al (2014) Activity of melatonin against Leishmania infantum promastigotes by mitochondrial dependent pathway. Chem Biol Interact 220:84–93.  https://doi.org/10.1016/j.cbi.2014.06.016PubMedCrossRefGoogle Scholar
  158. Elste V, Troesch B, Eggersdorfer M, Weber P (2017) Emerging evidence on neutrophil motility supporting its usefulness to define vitamin C intake requirements. Nutrients 9(5):503.  https://doi.org/10.3390/nu9050503PubMedCentralCrossRefGoogle Scholar
  159. Engel BE (2003) Renal function and disorders|Nutritional management of renal disorders. In: Encyclopedia of food sciences and nutrition. Elsevier, London, pp 4943–4951CrossRefGoogle Scholar
  160. Epstein FH, Badr KF, Ichikawa I (1988) Prerenal failure: a deleterious shift from renal compensation to decompensation. N Engl J Med 319:623–629.  https://doi.org/10.1056/NEJM198809083191007CrossRefGoogle Scholar
  161. Erkelens MN, Mebius RE (2017) Retinoic acid and immune homeostasis: a balancing act. Trends Immunol 38:168–180.  https://doi.org/10.1016/j.it.2016.12.006PubMedCrossRefGoogle Scholar
  162. Espinosa A, Henríquez-Olguín C, Jaimovich E (2016) Reactive oxygen species and calcium signals in skeletal muscle: a crosstalk involved in both normal signaling and disease. Cell Calcium 60:172–179.  https://doi.org/10.1016/j.ceca.2016.02.010PubMedCrossRefGoogle Scholar
  163. Estes MK, Kang G, Zeng CQ et al (2001) Pathogenesis of rotavirus gastroenteritis. Novartis Found Symp 238:82–96–100PubMedGoogle Scholar
  164. Evoy D, Lieberman MD, Fahey TJ, Daly JM (1998) Immunonutrition: the role of arginine. Nutrition 14:611–617PubMedCrossRefGoogle Scholar
  165. Falchetti R, Fuggetta MP, Lanzilli G et al (2001) Effects of resveratrol on human immune cell function. Life Sci 70:81–96PubMedCrossRefGoogle Scholar
  166. Fang Z, Yao K, Zhang X et al (2010) Nutrition and health relevant regulation of intestinal sulfur amino acid metabolism. Amino Acids 39:633–640.  https://doi.org/10.1007/s00726-010-0502-xPubMedCrossRefGoogle Scholar
  167. FAO/WHO (1998) The role of carbohydrates in nutrition. In: Expert Consultation (ed) Carbohydrates in human nutrition: report of a joint FAO/WHO. World Health Organization, Roma, p 140Google Scholar
  168. FAO/WHO (2001) Vitamin B12. In: Human vitamin and mineral requirements. FAO/WHO, Bangkok, ThailandGoogle Scholar
  169. Feleszko W, Ruszczyński M, Zalewski BM (2014) Non-specific immune stimulation in respiratory tract infections. Separating the wheat from the chaff. Paediatr Respir Rev 15:200–206.  https://doi.org/10.1016/j.prrv.2013.10.006PubMedGoogle Scholar
  170. Fenech M, El-Sohemy A, Cahill L et al (2011) Nutrigenetics and nutrigenomics: viewpoints on the current status and applications in nutrition research and practice. J Nutrigenet Nutrigenomics 4:69–89.  https://doi.org/10.1159/000327772PubMedPubMedCentralCrossRefGoogle Scholar
  171. Ferland G (2012) The discovery of vitamin K and its clinical applications. Ann Nutr Metab 61:213–218.  https://doi.org/10.1159/000343108PubMedCrossRefGoogle Scholar
  172. Fernando S, Wijewickrama A, Gomes L et al (2016) Patterns and causes of liver involvement in acute dengue infection. BMC Infect Dis 16:319.  https://doi.org/10.1186/s12879-016-1656-2PubMedPubMedCentralCrossRefGoogle Scholar
  173. Field CJ, Johnson IR, Schley PD (2002) Nutrients and their role in host resistance to infection. J Leukoc Biol 71:16–32PubMedGoogle Scholar
  174. Fine KD, Santa Ana CA, Porter JL, Fordtran JS (1991) Intestinal absorption of magnesium from food and supplements. J Clin Invest 88:396–402.  https://doi.org/10.1172/JCI115317PubMedPubMedCentralCrossRefGoogle Scholar
  175. Finnerty CC, Mabvuure NT, Ali A et al (2013) The surgically induced stress response. JPEN J Parenter Enteral Nutr 37:21S–29S.  https://doi.org/10.1177/0148607113496117PubMedPubMedCentralCrossRefGoogle Scholar
  176. Flores-Mateo G, Navas-Acien A, Pastor-Barriuso R, Guallar E (2006) Selenium and coronary heart disease: a meta-analysis. Am J Clin Nutr 84:762–773PubMedPubMedCentralCrossRefGoogle Scholar
  177. Florin T, Neale G, Gibson GR et al (1991) Metabolism of dietary sulphate: absorption and excretion in humans. Gut 32:766–773PubMedPubMedCentralCrossRefGoogle Scholar
  178. Foote JW, Delves HT (1984) Albumin bound and alpha 2-macroglobulin bound zinc concentrations in the sera of healthy adults. J Clin Pathol 37:1050–1054PubMedPubMedCentralCrossRefGoogle Scholar
  179. Fox JT, Stover PJ (2008) Folate-mediated one-carbon metabolism. Vitam Horm 79:1–44.  https://doi.org/10.1016/S0083-6729(08)00401-9PubMedCrossRefGoogle Scholar
  180. França T, Ishikawa L, Zorzella-Pezavento S et al (2009) Impact of malnutrition on immunity and infection. J Venom Anim Toxins Incl Trop Dis 15:374–390.  https://doi.org/10.1590/S1678-91992009000300003CrossRefGoogle Scholar
  181. Franceschi C (2007) Inflammaging as a major characteristic of old people: can it be prevented or cured? Nutr Rev 65:S173–S176PubMedCrossRefGoogle Scholar
  182. Francesconi W, Sánchez-Alavez M, Berton F et al (2016) The proinflammatory cytokine interleukin 18 regulates feeding by acting on the bed nucleus of the stria terminalis. J Neurosci 36:5170–5180.  https://doi.org/10.1523/JNEUROSCI.3919-15.2016PubMedCrossRefGoogle Scholar
  183. Frayn KN, Arner P, Yki-Järvinen H (2006) Fatty acid metabolism in adipose tissue, muscle and liver in health and disease. Essays Biochem 42:89–103.  https://doi.org/10.1042/bse0420089PubMedCrossRefGoogle Scholar
  184. Freeland-Graves JH, Bavik C (2003) Coenzymes. In: Encyclopedia of food sciences and nutrition. Elsevier, London, pp 1475–1481CrossRefGoogle Scholar
  185. Freeland-Graves JH, Trotter PJ (2003) Minerals–dietary importance. In: Encyclopedia of food sciences and nutrition. Elsevier, London, pp 4005–4012CrossRefGoogle Scholar
  186. Frei R, Akdis M, O’Mahony L (2015) Prebiotics, probiotics, synbiotics, and the immune system: experimental data and clinical evidence. Curr Opin Gastroenterol 31:153–158.  https://doi.org/10.1097/MOG.0000000000000151PubMedCrossRefGoogle Scholar
  187. Freudenberg A, Petzke KJ, Klaus S (2012) Comparison of high-protein diets and leucine supplementation in the prevention of metabolic syndrome and related disorders in mice. J Nutr Biochem 23:1524–1530.  https://doi.org/10.1016/j.jnutbio.2011.10.005PubMedCrossRefGoogle Scholar
  188. Furman I, Baudet C, Brachet P (1996) Differential expression of M-CSF, LIF, and TNF-alpha genes in normal and malignant rat glial cells: regulation by lipopolysaccharide and vitamin D. J Neurosci Res 46:360–366.  https://doi.org/10.1002/(SICI)1097-4547(19961101)46:3<360::AID-JNR9>3.0.CO;2-IPubMedCrossRefGoogle Scholar
  189. Fürst P, Stehle P (2004) What are the essential elements needed for the determination of amino acid requirements in humans? J Nutr 134:1558S–1565SPubMedCrossRefGoogle Scholar
  190. Gacs G, Barltrop D (1977) Significance of Ca-soap formation for calcium absorption in the rat. Gut 18:64–68PubMedPubMedCentralCrossRefGoogle Scholar
  191. Gadisa E, Tasew G, Abera A et al (2017) Serological signatures of clinical cure following successful treatment with sodium stibogluconate in Ethiopian visceral leishmaniasis. Cytokine 91:6–9.  https://doi.org/10.1016/j.cyto.2016.11.016PubMedCrossRefGoogle Scholar
  192. Gammoh NZ, Rink L (2017) Zinc in infection and inflammation. Nutrients 9:624.  https://doi.org/10.3390/nu9060624PubMedCentralCrossRefGoogle Scholar
  193. Ganz T, Nemeth E (2015) Iron homeostasis in host defence and inflammation. Nat Rev Immunol 15:500–510.  https://doi.org/10.1038/nri3863PubMedPubMedCentralCrossRefGoogle Scholar
  194. Garattini E, Mendel R, Romão MJ et al (2003) Mammalian molybdo-flavoenzymes, an expanding family of proteins: structure, genetics, regulation, function and pathophysiology. Biochem J 372:15–32.  https://doi.org/10.1042/BJ20030121PubMedPubMedCentralCrossRefGoogle Scholar
  195. Garcia-Lorda P, Serrano P, Jiménez-Expósito MJ et al (2000) Cytokine-driven inflammatory response is associated with the hypermetabolism of AIDS patients with opportunistic infections. J Parenter Enter Nutr 24:317–322.  https://doi.org/10.1177/0148607100024006317CrossRefGoogle Scholar
  196. García C, Rodríguez E, Do N et al (2006) Intestinal parasitosis in patients with HIV-AIDS. Rev Gastroenterol Peru 26:21–24PubMedGoogle Scholar
  197. Garrabrant T, Tuman RW, Ludovici D et al (2004) Small molecule inhibitors of methionine aminopeptidase type 2 (MetAP-2). Angiogenesis 7:91–96.  https://doi.org/10.1007/s10456-004-6089-7PubMedCrossRefGoogle Scholar
  198. Gatto M, de Abreu MM, Tasca KI et al (2013) Biochemical and nutritional evaluation of patients with visceral leishmaniasis before and after treatment with leishmanicidal drugs. Rev Soc Bras Med Trop 46:735–740.  https://doi.org/10.1590/0037-8682-0198-2013PubMedCrossRefGoogle Scholar
  199. Geldenhuys WJ, Caporoso J, Leeper TC et al (2017) Structure-activity and in vivo evaluation of a novel lipoprotein lipase (LPL) activator. Bioorg Med Chem Lett 27:303–308.  https://doi.org/10.1016/j.bmcl.2016.11.053PubMedCrossRefGoogle Scholar
  200. Gershwin ME, Nestel P, Keen CL (2004) Handbook of nutrition and immunity. Humana Press, Totowa, NJCrossRefGoogle Scholar
  201. Gerster H (1997) Vitamin A-functions, dietary requirements and safety in humans. Int J Vitam Nutr Res 67:71–90PubMedGoogle Scholar
  202. Ghoneim AH, Al-Azzawi MA, Elmasry SA et al (2015) Association of vitamin D status in the pathogenesis of chronic obstructive pulmonary disease. Egypt J Chest Dis Tuberc 64:805–812.  https://doi.org/10.1016/j.ejcdt.2015.06.004CrossRefGoogle Scholar
  203. Ghosh S, Banerjee S, Sil PC (2015) The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: a recent update. Food Chem Toxicol 83:111–124.  https://doi.org/10.1016/j.fct.2015.05.022PubMedCrossRefGoogle Scholar
  204. Giacconi R, Malavolta M, Costarelli L et al (2012) Comparison of intracellular zinc signals in nonadherent lymphocytes from young-adult and elderly donors: role of zinc transporters (Zip family) and proinflammatory cytokines. J Nutr Biochem 23:1256–1263.  https://doi.org/10.1016/j.jnutbio.2011.07.005PubMedCrossRefGoogle Scholar
  205. Giacconi R, Muti E, Malavolta M et al (2008) A novel Zip2 Gln/Arg/Leu codon 2 polymorphism is associated with carotid artery disease in aging. Rejuvenation Res 11:297–300.  https://doi.org/10.1089/rej.2008.0671PubMedCrossRefGoogle Scholar
  206. Gil Hernández A, Sánchez de Medina Contreras F (2010) Capítulo 1.2 Funciones de los nutrientes. Metabolismo energético y metabolismo intermediario. Regulación metabólica. In: Tratado de Nutrición. Médica-Panamericana, p 3412Google Scholar
  207. Gille A, Bodor ET, Ahmed K, Offermanns S (2008) Nicotinic acid: pharmacological effects and mechanisms of action. Annu Rev Pharmacol Toxicol 48:79–106.  https://doi.org/10.1146/annurev.pharmtox.48.113006.094746PubMedCrossRefGoogle Scholar
  208. Gillooly M, Bothwell TH, Torrance JD et al (1983) The effects of organic acids, phytates and polyphenols on the absorption of iron from vegetables. Br J Nutr 49:331–342PubMedCrossRefGoogle Scholar
  209. Goldschmied A, Modan B, Greenberg RA et al (1975) Urinary calcium excretion in relation to kidney function in the adult. J Am Geriatr Soc 23:155–160PubMedCrossRefGoogle Scholar
  210. Goncalves A, Roi S, Nowicki M et al (2015) Fat-soluble vitamin intestinal absorption: absorption sites in the intestine and interactions for absorption. Food Chem 172:155–160.  https://doi.org/10.1016/j.foodchem.2014.09.021PubMedCrossRefGoogle Scholar
  211. Goto H, Prianti M d G (2009) Immunoactivation and immunopathogeny during active visceral leishmaniasis. Rev Inst Med Trop Sao Paulo 51:241–246PubMedCrossRefGoogle Scholar
  212. Gozzelino R, Arosio P (2016) Iron homeostasis in health and disease. Int J Mol Sci 17:130.  https://doi.org/10.3390/ijms17010130PubMedCentralCrossRefGoogle Scholar
  213. Green R (2005) Cobalamins. In: Encyclopedia of human nutrition. Elsevier, Oxford, pp 401–407CrossRefGoogle Scholar
  214. Green R, Miller JW (2007) Cobalamin (vitamin B12). In: Zempleni J (ed) Handbook of vitamins, 4th edn. Taylor & Francis, Boca Raton, FL, pp 258–413Google Scholar
  215. Green R, Allen LH, Bjørke-Monsen A-L et al (2017) Vitamin B12 deficiency. Nat Rev Dis Prim 3:17040.  https://doi.org/10.1038/nrdp.2017.40PubMedCrossRefGoogle Scholar
  216. Greger R (2000) Physiology of renal sodium transport. Am J Med Sci 319:51–62PubMedCrossRefGoogle Scholar
  217. Gregus Z, Klaassen CD (1986) Disposition of metals in rats: a comparative study of fecal, urinary, and biliary excretion and tissue distribution of eighteen metals. Toxicol Appl Pharmacol 85:24–38PubMedCrossRefGoogle Scholar
  218. Grencis RK, Humphreys NE, Bancroft AJ (2014) Immunity to gastrointestinal nematodes: mechanisms and myths. Immunol Rev 260:183–205.  https://doi.org/10.1111/imr.12188PubMedPubMedCentralCrossRefGoogle Scholar
  219. Griffin IJ (2003) Magnesium. In: Encyclopedia of food sciences and nutrition. Elsevier, London, pp 3641–3646CrossRefGoogle Scholar
  220. Griffith EC, Su Z, Turk BE et al (1997) Methionine aminopeptidase (type 2) is the common target for angiogenesis inhibitors AGM-1470 and ovalicin. Chem Biol 4:461–471PubMedCrossRefGoogle Scholar
  221. Grimble RF (2001) Nutritional modulation of immune function. Proc Nutr Soc 60:389–397PubMedCrossRefGoogle Scholar
  222. Grimble RF (1994) Malnutrition and the immune response. 2. Impact of nutrients on cytokine biology in infection. Trans R Soc Trop Med Hyg 88:615–619PubMedCrossRefGoogle Scholar
  223. Grimble RF (1997) Effect of antioxidative vitamins on immune function with clinical applications. Int J Vitam Nutr Res 67:312–320PubMedGoogle Scholar
  224. Grimble RF (2005) Immunonutrition. Curr Opin Gastroenterol 21:216–222PubMedCrossRefGoogle Scholar
  225. Grimble RF (2006) The effects of sulfur amino acid intake on immune function in humans. J Nutr 136:1660S–1665SPubMedCrossRefGoogle Scholar
  226. Grimble RF (2009) Basics in clinical nutrition: immunonutrition – nutrients which influence immunity: effect and mechanism of action. E Spen Eur E J Clin Nutr Metab 4:e10–e13.  https://doi.org/10.1016/j.eclnm.2008.07.015CrossRefGoogle Scholar
  227. Grimble RF, Grimble GK (1998) Immunonutrition: role of sulfur amino acids, related amino acids, and polyamines. Nutrition 14:605–610PubMedCrossRefGoogle Scholar
  228. Gruenwedel DW (2003) NUCLEIC ACIDS|Properties and determination. In: Encyclopedia of food sciences and nutrition. Elsevier, London, pp 4147–4152CrossRefGoogle Scholar
  229. Gupta KB, Gupta R, Atreja A et al (2009) Tuberculosis and nutrition. Lung India 26:9–16.  https://doi.org/10.4103/0970-2113.45198PubMedPubMedCentralCrossRefGoogle Scholar
  230. Ha MN, Graham FL, D’Souza CK et al (2004) Functional rescue of vitamin C synthesis deficiency in human cells using adenoviral-based expression of murine l-gulono-gamma-lactone oxidase. Genomics 83:482–492.  https://doi.org/10.1016/j.ygeno.2003.08.018PubMedCrossRefGoogle Scholar
  231. Haanstra JR, González-Marcano EB, Gualdrón-López M, Michels PAM (2016) Biogenesis, maintenance and dynamics of glycosomes in trypanosomatid parasites. Biochim Biophys Acta 1863:1038–1048.  https://doi.org/10.1016/j.bbamcr.2015.09.015PubMedCrossRefGoogle Scholar
  232. Hacquebard M, Carpentier YA (2005) Vitamin E: absorption, plasma transport and cell uptake. Curr Opin Clin Nutr Metab Care 8:133–138PubMedCrossRefGoogle Scholar
  233. Haddy FJ (1991) Roles of sodium, potassium, calcium, and natriuretic factors in hypertension. Hypertens 18:III179–III183CrossRefGoogle Scholar
  234. Haddy FJ, Vanhoutte PM, Feletou M (2006) Role of potassium in regulating blood flow and blood pressure. Am J Physiol Regul Integr Comp Physiol 290:R546–R552.  https://doi.org/10.1152/ajpregu.00491.2005PubMedCrossRefGoogle Scholar
  235. Hafizi S, Dahlbäck B (2006) Gas6 and protein S. Vitamin K-dependent ligands for the Axl receptor tyrosine kinase subfamily. FEBS J 273:5231–5244.  https://doi.org/10.1111/j.1742-4658.2006.05529.xPubMedCrossRefGoogle Scholar
  236. Hagopian K, Ramsey JJ, Weindruch R (2008) Enzymes of glycerol and glyceraldehyde metabolism in mouse liver: effects of caloric restriction and age on activities. Biosci Rep 28:107–115.  https://doi.org/10.1042/BSR20080015PubMedPubMedCentralGoogle Scholar
  237. Hakim S, Bertucci MC, Conduit SE et al (2012) Inositol polyphosphate phosphatases in human disease. Curr Top Microbiol Immunol 362:247–314.  https://doi.org/10.1007/978-94-007-5025-8_12PubMedGoogle Scholar
  238. Halsted CH (2003) Absorption of water-soluble vitamins. Curr Opin Gastroenterol 19:113–117PubMedCrossRefGoogle Scholar
  239. Hansen RD, Raja C, Allen BJ (2000) Total body protein in chronic diseases and in aging. Ann N Y Acad Sci 904:345–352PubMedCrossRefGoogle Scholar
  240. Harhay MO, Olliaro PL, Costa DL, Costa CHN (2011) Urban parasitology: visceral leishmaniasis in Brazil. Trends Parasitol 27:403–409.  https://doi.org/10.1016/j.pt.2011.04.001PubMedCrossRefGoogle Scholar
  241. Harris ED (2013) Cofactors: Inorganic. In: Encyclopedia of human nutrition. Elsevier, Oxford, pp 357–365CrossRefGoogle Scholar
  242. Harris ED, Percival SS (1991) A role for ascorbic acid in copper transport. Am J Clin Nutr 54:1193S–1197SPubMedCrossRefGoogle Scholar
  243. Harris JA, Benedict FG (1918) A biometric study of human basal metabolism. Proc Natl Acad Sci USA 4:370–373PubMedPubMedCentralCrossRefGoogle Scholar
  244. Harrison LH, Naidu TG, Drew JS et al (1986) Reciprocal relationships between undernutrition and the parasitic disease visceral leishmaniasis. Rev Infect Dis 8:447–453.  https://doi.org/10.1016/0307-4412(86)90203-7PubMedCrossRefGoogle Scholar
  245. Hartwig A (2001) Role of magnesium in genomic stability. Mutat Res 475:113–121PubMedCrossRefGoogle Scholar
  246. Hatanaka H, Ishizawa H, Nakamura Y et al (2014) Effects of vitamin K3 and K5 on proliferation, cytokine production, and regulatory T cell-frequency in human peripheral-blood mononuclear cells. Life Sci 99:61–68.  https://doi.org/10.1016/j.lfs.2014.01.068PubMedCrossRefGoogle Scholar
  247. Hathcock JN, Hattan DG, Jenkins MY et al (1990) Evaluation of vitamin A toxicity. Am J Clin Nutr 52:183–202PubMedCrossRefGoogle Scholar
  248. Hazane-Puch F, Benaraba R, Valenti K et al (2010) Chromium III histidinate exposure modulates gene expression in HaCaT human keratinocytes exposed to oxidative stress. Biol Trace Elem Res 137:23–39.  https://doi.org/10.1007/s12011-009-8557-9PubMedCrossRefGoogle Scholar
  249. Heaney RP, Rafferty K (2001) Carbonated beverages and urinary calcium excretion. Am J Clin Nutr 74:343–347PubMedCrossRefGoogle Scholar
  250. Helderman JH (1981) Role of insulin in the intermediary metabolism of the activated thymic-derived lymphocyte. J Clin Invest 67:1636–1642PubMedPubMedCentralCrossRefGoogle Scholar
  251. Heliovaara MK, Teppo A-M, Karonen SL et al (2005) Plasma IL-6 concentration is inversely related to insulin sensitivity, and acute-phase proteins associate with glucose and lipid metabolism in healthy subjects. Diabetes Obes Metab 7:729–736.  https://doi.org/10.1111/j.1463-1326.2004.00463.xPubMedCrossRefGoogle Scholar
  252. Hemilä H (2017) Vitamin C and Infections. Nutrients 9(4):339.  https://doi.org/10.3390/nu9040339PubMedCentralCrossRefGoogle Scholar
  253. Henderson LM, Gross CJ (1979) Metabolism of niacin and niacinamide in perfused rat intestine. J Nutr 109:654–662PubMedCrossRefGoogle Scholar
  254. Herrera E, Barbas C (2001) Vitamin E: action, metabolism and perspectives. J Physiol Biochem 57:43–56CrossRefGoogle Scholar
  255. Hershfinkel M, Silverman WF, Sekler I (2007) The zinc sensing receptor, a link between zinc and cell signaling. Mol Med 13:331–336.  https://doi.org/10.2119/2006-00038.HershfinkelPubMedPubMedCentralCrossRefGoogle Scholar
  256. Heyer CME, Weiss E, Schmucker S et al (2015) The impact of phosphorus on the immune system and the intestinal microbiota with special focus on the pig. Nutr Res Rev 28:67–82.  https://doi.org/10.1017/S0954422415000049PubMedCrossRefGoogle Scholar
  257. Hicks RM, Padayatchi N, Shah NS et al (2014) Malnutrition associated with unfavorable outcome and death among South African MDR-TB and HIV co-infected children. Int J Tuberc Lung Dis 18:1074–1083.  https://doi.org/10.5588/ijtld.14.0231PubMedCrossRefGoogle Scholar
  258. Hida M, Mouane N, Ettair S et al (1999) Visceral leishmaniasis and malnutrition: a case report. Arch Pediatr 6:290–292.  https://doi.org/10.1016/S0929-693X(99)80268-1PubMedCrossRefGoogle Scholar
  259. Hill TR, Aspray TJ (2017) The role of vitamin D in maintaining bone health in older people. Ther Adv Musculoskelet Dis 9:89–95.  https://doi.org/10.1177/1759720X17692502PubMedPubMedCentralCrossRefGoogle Scholar
  260. Hodges K, Gill R (2010) Infectious diarrhea. Gut Microbes 1:4–21.  https://doi.org/10.4161/gmic.1.1.11036PubMedPubMedCentralCrossRefGoogle Scholar
  261. Holecek M (2014) Evidence of a vicious cycle in glutamine synthesis and breakdown in pathogenesis of hepatic encephalopathy-therapeutic perspectives. Metab Brain Dis 29:9–17.  https://doi.org/10.1007/s11011-013-9428-9PubMedCrossRefGoogle Scholar
  262. Holick MF (2005) Vitamin D|Physiology, dietary sources and requirements. In: Encyclopedia of human nutrition. Elsevier, Oxford, pp 368–377CrossRefGoogle Scholar
  263. Hollander D, Ruble PE (1978) Beta-carotene intestinal absorption: bile, fatty acid, pH, and flow rate effects on transport. Am J Physiol 235:E686–E691PubMedGoogle Scholar
  264. Holzapfel NP, Holzapfel BM, Champ S et al (2013) The potential role of lycopene for the prevention and therapy of prostate cancer: from molecular mechanisms to clinical evidence. Int J Mol Sci 14:14620–14646.  https://doi.org/10.3390/ijms140714620PubMedPubMedCentralCrossRefGoogle Scholar
  265. Hopkins RG, Failla ML (1999) Transcriptional regulation of interleukin-2 gene expression is impaired by copper deficiency in Jurkat human T lymphocytes. J Nutr 129:596–601PubMedCrossRefGoogle Scholar
  266. How KL, Hazewinkel HA, Mol JA (1994) Dietary vitamin D dependence of cat and dog due to inadequate cutaneous synthesis of vitamin D. Gen Comp Endocrinol 96:12–18.  https://doi.org/10.1006/gcen.1994.1154PubMedCrossRefGoogle Scholar
  267. Huang EP (1997) Metal ions and synaptic transmission: think zinc. Proc Natl Acad Sci USA 94:13386–13387PubMedPubMedCentralCrossRefGoogle Scholar
  268. Huang Z, Rose AH, Hoffmann PR (2012) The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 16:705–743.  https://doi.org/10.1089/ars.2011.4145PubMedPubMedCentralCrossRefGoogle Scholar
  269. Hughes DA (1999) Effects of dietary antioxidants on the immune function of middle-aged adults. Proc Nutr Soc 58:79–84PubMedCrossRefGoogle Scholar
  270. Hughes DA (2001) Dietary carotenoids and human immune function. Nutrition 10:823–827CrossRefGoogle Scholar
  271. Hühner J, Ingles-Prieto Á, Neusüß C et al (2015) Quantification of riboflavin, flavin mononucleotide, and flavin adenine dinucleotide in mammalian model cells by CE with LED-induced fluorescence detection. Electrophoresis 36:518–525.  https://doi.org/10.1002/elps.201400451PubMedCrossRefGoogle Scholar
  272. Hunt JR, Gallagher SK, Johnson LK (1994) Effect of ascorbic acid on apparent iron absorption by women with low iron stores. Am J Clin Nutr 59:1381–1385PubMedCrossRefGoogle Scholar
  273. Hurrell R, Egli I (2010) Iron bioavailability and dietary reference values. Am J Clin Nutr 91:1461S–1467S.  https://doi.org/10.3945/ajcn.2010.28674FPubMedCrossRefGoogle Scholar
  274. Hwang D (1989) Essential fatty acids and immune response. FASEB J 3:2052–2061PubMedCrossRefGoogle Scholar
  275. Imig JD, Ryan MJ (2013) Immune and inflammatory role in renal disease. Compr Physiol 3:957–976.  https://doi.org/10.1002/cphy.c120028PubMedPubMedCentralGoogle Scholar
  276. Ink SL, Henderson LM (1984) Vitamin B6 metabolism. Annu Rev Nutr 4:455–470.  https://doi.org/10.1146/annurev.nu.04.070184.002323PubMedCrossRefGoogle Scholar
  277. Institute of Medicine (2001a) Vitamin A. In: Food and Nutrition Board (ed) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academies Press (US), Washington, DCGoogle Scholar
  278. Institute of Medicine (1998a) Niacin. In: Institute of Medicine (US) (ed) Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. National Academies Press (US), Washington, DCGoogle Scholar
  279. Institute of Medicine (1998b) Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. National Academies Press, Washington, DCGoogle Scholar
  280. Institute of Medicine (2000a) Vitamin C. In: Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. National Academies Press, Washington, DCGoogle Scholar
  281. Institute of Medicine (2011) Overview of calcium. In: Ross AC, Taylor CL, Yaktine AL, Del Valle HB (eds) Dietary reference intakes for calcium and vitamin D. National Academies Press (US), Washington, DCGoogle Scholar
  282. Institute of Medicine (1997a) Phosphorus. In: Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. National Academies Press (US), Washington, DCGoogle Scholar
  283. Institute of Medicine (1997b) Magnesium. In: Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. National Academies Press, Washington, DC, pp 432–190Google Scholar
  284. Institute of Medicine (2001b) Zinc. In: Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academies Press (US), Washington, DCGoogle Scholar
  285. Institute of Medicine (2001c) Copper. In: Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academies Press (US), Washington, DCGoogle Scholar
  286. Institute of Medicine (2001d) Iodine. In: Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academies Press, Washington, DCGoogle Scholar
  287. Institute of Medicine (2001e) Manganese. In: Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academies Press, Washington, DC, pp 419–394Google Scholar
  288. Institute of Medicine (2001f) Molybdenum. In: Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academies Press, Washington, DC, pp 441–420Google Scholar
  289. Institute of Medicine (2000b) Selenium. In: Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. National Academies Press, Washington, DC, p 324, 284Google Scholar
  290. Institute of Medicine (2001g) Chromium. In: Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academies Press (US), Washington, DCGoogle Scholar
  291. Institute of Medicine (1998c) Choline. In: Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. National Academies Press (US), Washington, DCGoogle Scholar
  292. Iolascon A, d’Apolito M, Servedio V et al (2005) Microcytic anemia and hepatic iron overload in a child with compound heterozygous mutations in DMT1 (SCL11A2). Blood 107:354–349Google Scholar
  293. Jacob RA, Skala JH, Omaye ST, Turnlund JR (1987) Effect of varying ascorbic acid intakes on copper absorption and ceruloplasmin levels of young men. J Nutr 117:2109–2115PubMedCrossRefGoogle Scholar
  294. Jacobs A (1971) Haemopoietic factors Iron absorption. J Clin Path (Roy Coll Path) 24:55–59CrossRefGoogle Scholar
  295. Jacobson TA, Glickstein SB, Rowe JD, Soni PN (2012) Effects of eicosapentaenoic acid and docosahexaenoic acid on low-density lipoprotein cholesterol and other lipids: a review. J Clin Lipidol 6:5–18.  https://doi.org/10.1016/j.jacl.2011.10.018PubMedCrossRefGoogle Scholar
  296. Jahnen-Dechent W, Ketteler M (2012) Magnesium basics. Clin Kidney J 5:i3–i14.  https://doi.org/10.1093/ndtplus/sfr163PubMedPubMedCentralCrossRefGoogle Scholar
  297. Janssen I, Katzmarzyk PT, Srinivasan SR et al (2005) Combined influence of body mass index and waist circumference on coronary artery disease risk factors among children and adolescents. Pediatrics 115:1623–1630.  https://doi.org/10.1542/peds.2004-2588PubMedCrossRefGoogle Scholar
  298. Japur CC, Penaforte FRO, Chiarello PG et al (2009) Harris-Benedict equation for critically ill patients: are there differences with indirect calorimetry? J Crit Care 24:628.e1–628.e5.  https://doi.org/10.1016/j.jcrc.2008.12.007CrossRefGoogle Scholar
  299. Jeffery LE, Wood AM, Qureshi OS et al (2012) Availability of 25-hydroxyvitamin D(3) to APCs controls the balance between regulatory and inflammatory T cell responses. J Immunol 189:5155–5164.  https://doi.org/10.4049/jimmunol.1200786PubMedPubMedCentralCrossRefGoogle Scholar
  300. Jiang Y, Trnka MJ, Medzihradszky KF et al (2009) Covalent heme attachment to the protein in human heme oxygenase-1 with selenocysteine replacing the His25 proximal iron ligand. J Inorg Biochem 103:316–325.  https://doi.org/10.1016/j.jinorgbio.2008.11.002PubMedCrossRefGoogle Scholar
  301. Johnson MA (2003) Copper| Physiology. In: Encyclopedia of food sciences and nutrition. Elsevier, London, pp 1640–1647CrossRefGoogle Scholar
  302. Julve J, Martín-Campos JM, Escolà-Gil JC, Blanco-Vaca F (2016) Chylomicrons: advances in biology, pathology, laboratory testing, and therapeutics. Clin Chim Acta 455:134–148.  https://doi.org/10.1016/j.cca.2016.02.004PubMedCrossRefGoogle Scholar
  303. Kall MA (2003) Ascorbic acid|Properties and determination. In: Encyclopedia of food sciences and nutrition. Elsevier, London, pp 316–324CrossRefGoogle Scholar
  304. Kamanna VS, Kashyap ML (2008) Mechanism of action of niacin. Am J Cardiol 101:20B–26B.  https://doi.org/10.1016/j.amjcard.2008.02.029PubMedCrossRefGoogle Scholar
  305. Kanti Das T, Wati MR, Fatima-Shad K (2014) Oxidative stress gated by Fenton and Haber Weiss reactions and its association with Alzheimer’s disease. Arch Neurosci 2(3).  https://doi.org/10.5812/archneurosci.20078
  306. Karney WW, Tong MJ (1972) Malabsorption in plasmodium falciparum malaria. Am J Trop Med Hyg 21:1–5PubMedCrossRefGoogle Scholar
  307. Katz MH (2012) HIV infection among persons born outside the United States. JAMA 308:623–624.  https://doi.org/10.1001/jama.2012.8670PubMedCrossRefGoogle Scholar
  308. Kaur K, Gupta R, Saraf SA, Saraf SK (2014) Zinc: the metal of life. Compr Rev Food Sci Food Saf 13:358–376.  https://doi.org/10.1111/1541-4337.12067CrossRefGoogle Scholar
  309. Keen CL, Gershwin ME (1990) Zinc deficiency and immune function. Annu Rev Nutr 10:415–431.  https://doi.org/10.1146/annurev.nu.10.070190.002215PubMedCrossRefGoogle Scholar
  310. Keen CL, Uriu-Adams JY, Ensunsa JL, Gershwin ME (2004) Trace elements/Minerals and immunity. In: Handbook of nutrition and immunity. Humana Press, Totowa, NJ, pp 140–117Google Scholar
  311. Keen CL, Zidenberg-Cherr S (2003) Manganese. In: Encyclopedia of food sciences and nutrition. Elsevier, London, pp 3686–3691CrossRefGoogle Scholar
  312. Kegley EB, Spears JW, Auman SK (2001) Dietary phosphorus and an inflammatory challenge affect performance and immune function of weanling pigs. J Anim Sci 79:413–419PubMedCrossRefGoogle Scholar
  313. Kehl-Fie TE, Chitayat S, Hood MI et al (2011) Nutrient metal sequestration by calprotectin inhibits bacterial superoxide defense, enhancing neutrophil killing of Staphylococcus aureus. Cell Host Microbe 10:158–164.  https://doi.org/10.1016/j.chom.2011.07.004PubMedPubMedCentralCrossRefGoogle Scholar
  314. Kempaiah P, Dokladny K (2016) Reduced Hsp70 and glutamine in pediatric severe malaria anemia: role of hemozoin in suppressing Hsp70 and NF-jB activation. Mol Med 22:1.  https://doi.org/10.2119/molmed.2016.00130CrossRefGoogle Scholar
  315. Keusch GT (2003) The history of nutrition: malnutrition, infection and immunity. J Nutr 133:336S–340SPubMedCrossRefGoogle Scholar
  316. Khoshoo V, Raj P, Srivastava R, Bhan MK (1990) Salmonella typhimurium-associated severe protracted diarrhea in infants and young children. J Pediatr Gastroenterol Nutr 10:33–36.  https://doi.org/10.1007/978-3-642-01846-6_6PubMedCrossRefGoogle Scholar
  317. Kieliszek M, Błażejak S (2016) Current knowledge on the importance of selenium in food for living organisms: a review. Molecules 21:609.  https://doi.org/10.3390/molecules21050609CrossRefGoogle Scholar
  318. Kim M-H, Kim H (2017) The roles of glutamine in the intestine and its implication in intestinal diseases. Int J Mol Sci.  https://doi.org/10.3390/ijms18051051
  319. King LE, Osati-Ashtiani F, Fraker PJ (1995) Depletion of cells of the B lineage in the bone marrow of zinc-deficient mice. Immunology 85:69–73PubMedPubMedCentralGoogle Scholar
  320. Kirkland JB (2007) Niacin. In: Zempleni J (ed) Handbook of vitamins. Taylor & Francis, Boca Raton, FL, pp 232–191Google Scholar
  321. Klack K, de Carvalho JF (2006) Vitamina K: metabolismo, fontes e interação com o anticoagulante varfarina. Rev Bras Reumatol 46:398–406.  https://doi.org/10.1590/S0482-50042006000600007CrossRefGoogle Scholar
  322. Klasing KC (1994) Avian leukocytic cytokines. Poult Sci 73:1035–1043PubMedCrossRefGoogle Scholar
  323. Klawe JJ (2003) Iron|Biosynthesis and significance of Heme (Haem). In: Encyclopedia of food sciences and nutrition. Elsevier, London, pp 3379–3381CrossRefGoogle Scholar
  324. Klevay LM, Bogden JD, Aladjem M et al (2007) Renal and gastrointestinal potassium excretion in humans: new insight based on new data and review and analysis of published studies. J Am Coll Nutr 26:103–110PubMedCrossRefGoogle Scholar
  325. Knutson MD, Oukka M, Koss LM et al (2005) Iron release from macrophages after erythrophagocytosis is up-regulated by ferroportin 1 overexpression and down-regulated by hepcidin. Proc Natl Acad Sci 102:1324–1328.  https://doi.org/10.1073/pnas.0409409102PubMedPubMedCentralCrossRefGoogle Scholar
  326. Kocyigit A, Gur S, Erel O, Gurel MS (2002) Associations among plasma selenium, zinc, copper, and iron concentrations and immunoregulatory cytokine levels in patients with cutaneous leishmaniasis. Biol Trace Elem Res 90:47–55.  https://doi.org/10.1385/BTER:90:1-3:47PubMedCrossRefGoogle Scholar
  327. Kohlmeier M (2003) Vitamin B6. In: Nutrient metabolism. Elsevier, Amsterdam, pp 581–591CrossRefGoogle Scholar
  328. Kojetin DJ, Venters RA, Kordys DR et al (2006) Structure, binding interface and hydrophobic transitions of Ca2+-loaded calbindin-D(28K). Nat Struct Mol Biol 13:641–647.  https://doi.org/10.1038/nsmb1112PubMedCrossRefGoogle Scholar
  329. Kosmiski L (2011) Energy expenditure in HIV infection. Am J Clin Nutr 94:1677S–1682S.  https://doi.org/10.3945/ajcn.111.012625PubMedPubMedCentralCrossRefGoogle Scholar
  330. Kothapalli N, Camporeale G, Kueh A et al (2005) Biological functions of biotinylated histones. J Nutr Biochem 16:446–448.  https://doi.org/10.1016/j.jnutbio.2005.03.025PubMedPubMedCentralCrossRefGoogle Scholar
  331. Kowalska A, Siwicki AK, Kowalski RK (2017) Dietary resveratrol improves immunity but reduces reproduction of broodstock medaka Oryzias latipes (Temminck & Schlegel). Fish Physiol Biochem 43:27–37.  https://doi.org/10.1007/s10695-016-0265-8PubMedCrossRefGoogle Scholar
  332. Krajcovicová-Kudlácková M, Pauková V, Baceková M, Dusinská M (2004) Lipid peroxidation in relation to vitamin C and vitamin E levels. Cent Eur J Public Health 12:46–48PubMedGoogle Scholar
  333. Krawinkel MB (2012) Interaction of nutrition and infections globally: an overview. Ann Nutr Metab 61:39–45.  https://doi.org/10.1159/000345162PubMedCrossRefGoogle Scholar
  334. Krebs EG, Beavo JA (1979) Phosphorylation-dephosphorylation of enzymes. Annu Rev Biochem 48:923–959.  https://doi.org/10.1146/annurev.bi.48.070179.004423PubMedCrossRefGoogle Scholar
  335. Kromann N, Green A (1980) Epidemiological studies in the Upernavik district, Greenland. Incidence of some chronic diseases 1950–1974. Acta Med Scand 208:401–406PubMedCrossRefGoogle Scholar
  336. Kumar N, Garg AK, Mudgal V et al (2008) Effect of different levels of selenium supplementation on growth rate, nutrient utilization, blood metabolic profile, and immune response in lambs. Biol Trace Elem Res 126:44–56.  https://doi.org/10.1007/s12011-008-8214-8CrossRefGoogle Scholar
  337. Kumar V, Bimal S, Singh SK et al (2014) Leishmania donovani: dynamics of L. donovani evasion of innate immune cell attack due to malnutrition in visceral leishmaniasis. Nutrition 30:449–458.  https://doi.org/10.1016/j.nut.2013.10.003PubMedCrossRefGoogle Scholar
  338. Kurosawa M (1994) Phosphorylation and dephosphorylation of protein in regulating cellular function. J Pharmacol Toxicol Methods 31:135–139.  https://doi.org/10.1016/1056-8719(94)90075-2PubMedCrossRefGoogle Scholar
  339. Kurtzman NA, White MG, Rogers PW, Flynn JJ (1972) Relationship of sodium reabsorption and glomerular filtration rate to renal glucose reabsorption. J Clin Invest 51:127–133.  https://doi.org/10.1172/JCI106782PubMedPubMedCentralCrossRefGoogle Scholar
  340. Küry S, Dréno B, Bézieau S et al (2002) Identification of SLC39A4, a gene involved in acrodermatitis enteropathica. Nat Genet 31:239–240.  https://doi.org/10.1038/ng913PubMedCrossRefGoogle Scholar
  341. L’Abbé MR (2003) Calcium|Physiology. In: Encyclopedia of food sciences and nutrition. Elsevier, London, pp 771–779CrossRefGoogle Scholar
  342. Lachance C, Segura M, Dominguez-Punaro MC et al (2014) Deregulated balance of omega-6 and omega-3 polyunsaturated fatty acids following infection by the zoonotic pathogen Streptococcus suis. Infect Immun 82:1778–1785.  https://doi.org/10.1128/IAI.01524-13PubMedPubMedCentralCrossRefGoogle Scholar
  343. Lalor SM, Mellanby RJ, Friend EJ et al (2012) Domesticated cats with active mycobacteria infections have low serum vitamin D (25(OH)D) concentrations. Transbound Emerg Dis 59:279–281.  https://doi.org/10.1111/j.1865-1682.2011.01265.xPubMedCrossRefGoogle Scholar
  344. Lamers Y (2011) Folate recommendations for pregnancy, lactation, and infancy. Ann Nutr Metab 59:32–37.  https://doi.org/10.1159/000332073PubMedCrossRefGoogle Scholar
  345. Laragh JH, Sealey JE (2011) Renin-angiotensin-aldosterone system and the renal regulation of sodium, potassium, and blood pressure homeostasis. In: Comprehensive physiology. Wiley, Hoboken, NJGoogle Scholar
  346. Lazzerini M, Wanzira H (2016) Oral zinc for treating diarrhoea in children. Cochrane Database Syst Rev 12:CD005436.  https://doi.org/10.1002/14651858.CD005436.pub5PubMedGoogle Scholar
  347. Leach RM, Lilburn MS (1978) Manganese metabolism and its function. World Rev Nutr Diet 32:123–134PubMedCrossRefGoogle Scholar
  348. Lee M (2013) Ingesta: los nutrientes y su metabolismo. In: Mahan K, Escott-Stump S, Raymond J (eds) Krause’s food and the nutrition care process, 13th edn. Elsevier España, S.L, España, pp 128–132Google Scholar
  349. Leem AY, Park MS, Park BH et al (2017) Value of serum cystatin C measurement in the diagnosis of sepsis-induced kidney injury and prediction of renal function recovery. Yonsei Med J 58:604–612.  https://doi.org/10.3349/ymj.2017.58.3.604PubMedPubMedCentralCrossRefGoogle Scholar
  350. Leermakers ETM, Moreira EM, Kiefte-de Jong JC et al (2015) Effects of choline on health across the life course: a systematic review. Nutr Rev 73:500–522.  https://doi.org/10.1093/nutrit/nuv010PubMedCrossRefGoogle Scholar
  351. Lestari MLAD, Indrayanto G (2014) Curcumin. In: Profiles of drug substances, excipients, and related methodology. Elsevier Academic Press, San Diego, pp 113–204Google Scholar
  352. Levine M, Conry-Cantilena C, Wang Y et al (1996) Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance. Proc Natl Acad Sci USA 93:3704–3709PubMedPubMedCentralCrossRefGoogle Scholar
  353. Li S, Siyuan T, Jiangmin F et al (2017) Analysis of the association between Mycobacterium tuberculosis infection and Immunoglobulin A nephropathy by early secreted antigenic target 6 detection in renal biopsies: a prospective study. Postgrad Med 129:307–311.  https://doi.org/10.1080/00325481.2017.1289054PubMedCrossRefGoogle Scholar
  354. Li X, Lian F, Liu C et al (2015) Isocaloric pair-fed high-carbohydrate diet induced more hepatic steatosis and inflammation than high-fat diet mediated by miR-34a/SIRT1 axis in mice. Sci Rep 5:16774.  https://doi.org/10.1038/srep16774PubMedPubMedCentralCrossRefGoogle Scholar
  355. Li Y, Schellhorn HE (2007) New developments and novel therapeutic perspectives for vitamin C. J Nutr 137:2171–2184PubMedCrossRefGoogle Scholar
  356. Libako P, Miller J, Nowacki W et al (2015) Extracellular Mg concentration and Ca blockers modulate the initial steps of the response of Th2 lymphocytes in co-culture with macrophages and dendritic cells. Eur Cytokine Netw 26:1–9.  https://doi.org/10.1684/ecn.2015.0361PubMedGoogle Scholar
  357. Libako P, Nowacki W, Castiglioni S et al (2016) Extracellular magnesium and calcium blockers modulate macrophage activity. Magnes Res 29:11–21.  https://doi.org/10.1684/mrh.2016.0398PubMedGoogle Scholar
  358. Lichtstein HC, Gunsalus IC, Umbreit WW (1945) Function of the vitamin B6 group; pyridoxal phosphate (codecarboxylase) in transamination. J Biol Chem 161:311–320PubMedGoogle Scholar
  359. Linder M (2013) Mobilization of stored iron in mammals: a review. Nutrients 5:4022–4050.  https://doi.org/10.3390/nu5104022PubMedPubMedCentralCrossRefGoogle Scholar
  360. Lindquist S, Hernell O (2010) Lipid digestion and absorption in early life: an update. Curr Opin Clin Nutr Metab Care 13:314–320.  https://doi.org/10.1097/MCO.0b013e328337bbf0PubMedCrossRefGoogle Scholar
  361. Linus Pauling Institute (2016) Sodium (Chloride). In: Oregon State Univ. http://lpi.oregonstate.edu/mic/minerals/sodium#reference5. Accessed 6 Jun 2017
  362. Liu G, Ren W, Fang J et al (2017) L-Glutamine and L-arginine protect against enterotoxigenic Escherichia coli infection via intestinal innate immunity in mice. Amino Acids 49(12):1945–1954.  https://doi.org/10.1007/s00726-017-2410-9PubMedCrossRefGoogle Scholar
  363. Liu J, Chakraborty S, Hosseinzadeh P et al (2014) Metalloproteins containing cytochrome, iron–sulfur, or copper redox centers. Chem Rev 114:4366–4469.  https://doi.org/10.1021/cr400479bPubMedPubMedCentralCrossRefGoogle Scholar
  364. Liu RH (2003) Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am J Clin Nutr 78:517S–520SPubMedCrossRefGoogle Scholar
  365. Liu Y, Zhang Y, Dong P et al (2015) Digestion of nucleic acids starts in the stomach. Sci Rep 5:11936.  https://doi.org/10.1038/srep11936PubMedPubMedCentralCrossRefGoogle Scholar
  366. Lo CJ, Chiu KC, Fu M et al (1999) Fish oil decreases macrophage tumor necrosis factor gene transcription by altering the NF kappa B activity. J Surg Res 82:216–221.  https://doi.org/10.1006/jsre.1998.5524PubMedCrossRefGoogle Scholar
  367. Lobo GP, Amengual J, Palczewski G et al (2012) Mammalian carotenoid-oxygenases: key players for carotenoid function and homeostasis. Biochim Biophys Acta 1821:78–87.  https://doi.org/10.1016/j.bbalip.2011.04.010PubMedCrossRefGoogle Scholar
  368. Lodish H, Berk A, Zipursky SL et al (2000a) Structure of nucleic acids. In: Molecular cell biology, 4th edn. W. H. Freeman, New YorkGoogle Scholar
  369. Lodish H, Berk A, Zipursky SL et al (2000b) Intracellular ion environment and membrane electric potential. In: Molecular cell biology, 4th edn. W. H. Freeman, New YorkGoogle Scholar
  370. Long CL, Schaffel N, Geiger JW et al (1979) Metabolic response to injury and illness: estimation of energy and protein needs from indirect calorimetry and nitrogen balance. JPEN J Parenter Enteral Nutr 3:452–456.  https://doi.org/10.1177/014860717900300609PubMedCrossRefGoogle Scholar
  371. Long KZ, Rosado JL, Fawzi W (2007) The comparative impact of iron, the B-complex vitamins, vitamins C and E, and selenium on diarrheal pathogen outcomes relative to the impact produced by vitamin A and zinc. Nutr Rev 65:218–232PubMedCrossRefGoogle Scholar
  372. Longarela A, Olarra J, Suárez L, García de Lorenzo A (2000) Metabolic response to stress, can we control it? Nutr Hosp 15:275–279PubMedGoogle Scholar
  373. Lönnerdal B (2000) Dietary factors influencing zinc absorption. J Nutr 130:1378S–1383SPubMedCrossRefGoogle Scholar
  374. Lonsdale D (2006) A review of the biochemistry, metabolism and clinical benefits of Thiamin(e) and its derivatives. Evid Based Complement Alternat Med 3:49–59.  https://doi.org/10.1093/ecam/nek009PubMedPubMedCentralCrossRefGoogle Scholar
  375. Lopina OD (2000) Na+, K+-ATPase: structure, mechanism, and regulation. Membr Cell Biol 13:721–744PubMedGoogle Scholar
  376. Lorenz KJ, Schallert R, Daniel V (2015) Immunonutrition – the influence of early postoperative glutamine supplementation in enteral/parenteral nutrition on immune response, wound healing and length of hospital stay in multiple trauma patients and patients after extensive surgery. GMS Interdiscip Plast Reconstr Surg DGPW 4.:Doc15.  https://doi.org/10.3205/iprs000074
  377. Lovegrove A, Edwards CH, De Noni I et al (2017) Role of polysaccharides in food, digestion, and health. Crit Rev Food Sci Nutr 57:237–253.  https://doi.org/10.1080/10408398.2014.939263PubMedCrossRefGoogle Scholar
  378. Lubos E, Loscalzo J, Handy DE (2011) Glutathione Peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 15:1957–1997.  https://doi.org/10.1089/ars.2010.3586PubMedPubMedCentralCrossRefGoogle Scholar
  379. Luo C, Wu X-G (2011) Lycopene enhances antioxidant enzyme activities and immunity function in N-Methyl-N′-nitro-N-nitrosoguanidine–induced gastric cancer rats. Int J Mol Sci 12:3340–3351.  https://doi.org/10.3390/ijms12053340PubMedPubMedCentralCrossRefGoogle Scholar
  380. Lutsenko S (2010) Human copper homeostasis: a network of interconnected pathways. Curr Opin Chem Biol 14:211–217.  https://doi.org/10.1016/j.cbpa.2010.01.003PubMedCrossRefGoogle Scholar
  381. Lynch SR (2003) Iron|Physiology. In: Encyclopedia of food sciences and nutrition. Elsevier, London, pp 3373–3379CrossRefGoogle Scholar
  382. Macfarlane GJ, Paudyal P, Doherty M et al (2012) A systematic review of evidence for the effectiveness of practitioner-based complementary and alternative therapies in the management of rheumatic diseases: rheumatoid arthritis. Rheumatology (Oxford) 51:1707–1713.  https://doi.org/10.1093/rheumatology/kes133CrossRefGoogle Scholar
  383. Machado-Coelho GLL, Caiaffa WT, Genaro O et al (2005) Risk factors for mucosal manifestation of American cutaneous leishmaniasis. Trans R Soc Trop Med Hyg 99:55–61.  https://doi.org/10.1016/j.trstmh.2003.08.001PubMedCrossRefGoogle Scholar
  384. MacPherson A, Dixon J (2003) Cobalt. In: Encyclopedia of food sciences and nutrition. Elsevier, London, pp 1431–1436CrossRefGoogle Scholar
  385. Maeda N, Ishii M, Nishimura K, Kamimura K (2011) Functions of chondroitin sulfate and heparan sulfate in the developing brain. Neurochem Res 36:1228–1240.  https://doi.org/10.1007/s11064-010-0324-yPubMedCrossRefGoogle Scholar
  386. Mahan LK, Escott-Stump S, Raymond JJ, Krause MV (2013) Krause dietoterapia. Elsevier, AmsterdamGoogle Scholar
  387. Mainous MR, Deitch EA (1994) Nutrition and infection. Surg Clin North Am 74:659–676PubMedGoogle Scholar
  388. Maiuolo J, Oppedisano F, Gratteri S et al (2016) Regulation of uric acid metabolism and excretion. Int J Cardiol 213:8–14.  https://doi.org/10.1016/j.ijcard.2015.08.109PubMedCrossRefGoogle Scholar
  389. Makarchikov AF (2009) Vitamin B1: Metabolism and functions. Biochem Suppl Ser B Biomed Chem 3:116–128.  https://doi.org/10.1134/S1990750809020024Google Scholar
  390. Malafaia G (2009) Protein-energy malnutrition as a risk factor for visceral leishmaniasis: a review. Parasite Immunol 31:587–596.  https://doi.org/10.1111/j.1365-3024.2009.01117.xPubMedCrossRefGoogle Scholar
  391. Mangin M, Sinha R, Fincher K (2014) Inflammation and vitamin D: the infection connection. Inflamm Res 63:803–819.  https://doi.org/10.1007/s00011-014-0755-zPubMedPubMedCentralCrossRefGoogle Scholar
  392. Manicassamy S, Ravindran R, Deng J et al (2009) Toll-like receptor 2-dependent induction of vitamin A-metabolizing enzymes in dendritic cells promotes T regulatory responses and inhibits autoimmunity. Nat Med 15:401–409.  https://doi.org/10.1038/nm.1925PubMedPubMedCentralCrossRefGoogle Scholar
  393. Manolagas SC, Yu XP, Girasole G, Bellido T (1994) Vitamin D and the hematolymphopoietic tissue: a 1994 update. Semin Nephrol 14:129–143PubMedGoogle Scholar
  394. Mansoorabadi SO, Padmakumar R, Fazliddinova N et al (2005) Characterization of a succinyl-CoA radical-cob(II)alamin spin triplet intermediate in the reaction catalyzed by adenosylcobalamin-dependent methylmalonyl-CoA mutase. Biochemistry 44:3153–3158.  https://doi.org/10.1021/bi0482102PubMedPubMedCentralCrossRefGoogle Scholar
  395. Mansoorabadi SO, Thibodeaux CJ, Liu H (2007) The diverse roles of flavin coenzymes nature’s most versatile thespians. J Org Chem 72:6329–6342.  https://doi.org/10.1021/jo0703092PubMedPubMedCentralCrossRefGoogle Scholar
  396. Manzetti S, Zhang J, van der Spoel D (2014) Thiamin function, metabolism, uptake, and transport. Biochemistry 53:821–835.  https://doi.org/10.1021/bi401618yPubMedCrossRefGoogle Scholar
  397. Marcinkiewicz J, Kontny E (2014) Taurine and inflammatory diseases. Amino Acids 46:7–20.  https://doi.org/10.1007/s00726-012-1361-4PubMedCrossRefGoogle Scholar
  398. Maret W (2013) Zinc biochemistry: from a single zinc enzyme to a key element of life. Adv Nutr 4:82–91.  https://doi.org/10.3945/an.112.003038PubMedPubMedCentralCrossRefGoogle Scholar
  399. Maret W, Sandstead HH (2006) Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol 20:3–18.  https://doi.org/10.1016/j.jtemb.2006.01.006PubMedCrossRefGoogle Scholar
  400. Marion-Letellier R, Savoye G, Ghosh S (2016) IBD: in food we trust. J Crohns Colitis 10:1351–1361.  https://doi.org/10.1093/ecco-jcc/jjw106PubMedCrossRefGoogle Scholar
  401. Martens JH, Barg H, Warren MJ, Jahn D (2002) Microbial production of vitamin B12. Appl Microbiol Biotechnol 58:275–285.  https://doi.org/10.1007/s00253-001-0902-7PubMedCrossRefGoogle Scholar
  402. Mataix J, Sánchez de Medina F (2009) Vitaminas. In: Mataix J (ed) Nutrición y Alimentación, Volumen 1. Oceáno/Ergón, Madrid, pp 330–185Google Scholar
  403. Matthews DM (1975) Protein absorption. Bibl Nutr Dieta 5:28–41Google Scholar
  404. Mattmiller SA, Carlson BA, Sordillo LM (2013) Regulation of inflammation by selenium and selenoproteins: impact on eicosanoid biosynthesis. J Nutr Sci 2:e28.  https://doi.org/10.1017/jns.2013.17PubMedPubMedCentralGoogle Scholar
  405. Mazur A, Maier JAM, Rock E et al (2007) Magnesium and the inflammatory response: potential physiopathological implications. Arch Biochem Biophys 458:48–56.  https://doi.org/10.1016/j.abb.2006.03.031PubMedCrossRefGoogle Scholar
  406. McCall MR, Frei B (1999) Can antioxidant vitamins materially reduce oxidative damage in humans? Free Radic Biol Med 26:1034–1053PubMedCrossRefGoogle Scholar
  407. McCance R, Lawrence R (1929) The carbohydrate content of foods. HMSO, LondonGoogle Scholar
  408. McClave SA, Snider HL (1994) Understanding the metabolic response to critical illness: factors that cause patients to deviate from the expected pattern of hypermetabolism. New Horiz 2:139–146PubMedGoogle Scholar
  409. McCormick CC (2002) Passive diffusion does not play a major role in the absorption of dietary calcium in normal adults. J Nutr 132:3428–3430PubMedCrossRefGoogle Scholar
  410. McCormick DB (2003) Riboflavin|Physiology. In: Encyclopedia of food sciences and nutrition. Elsevier, London, pp 4989–4995CrossRefGoogle Scholar
  411. McCuskee S, Brickley EB, Wood A, Mossialos E (2014) Malaria and macronutrient deficiency as correlates of anemia in young children: a systematic review of observational studies. Ann Glob Heal 80:458–465.  https://doi.org/10.1016/j.aogh.2015.01.003CrossRefGoogle Scholar
  412. McDowell LR (2000) Vitamins in animal and human nutrition. In: Vitamins in animal and human nutrition, 2nd edn. Iowa State University Press, Ames, pp 564–523CrossRefGoogle Scholar
  413. McLaren DS, Kraemer K (2012) Vitamin A in health. World Rev Nutr Diet 103:33–51.  https://doi.org/10.1159/000170954PubMedCrossRefGoogle Scholar
  414. McRae MP (2017) Therapeutic benefits of glutamine: an umbrella review of meta-analyses. Biomed Rep 6:576–584.  https://doi.org/10.3892/br.2017.885PubMedPubMedCentralCrossRefGoogle Scholar
  415. Meckling KA (2009) When good nutrients go bad: can we predict nutrient-drug interactions? Br J Nutr 102:334–336.  https://doi.org/10.1017/S0007114508199494PubMedCrossRefGoogle Scholar
  416. Mehta NM, Duggan CP (2009) Nutritional deficiencies during critical illness. Pediatr Clin North Am 56:1143–1160.  https://doi.org/10.1016/j.pcl.2009.06.007PubMedPubMedCentralCrossRefGoogle Scholar
  417. Melse-Boonstra A, Vossenaar M, van Loo-Bouwman CA et al (2017) Dietary vitamin A intake recommendations revisited: global confusion requires alignment of the units of conversion and expression. Public Health Nutr:1–4.  https://doi.org/10.1017/S1368980017000477
  418. Mendel RR (2013a) Metabolism of molybdenum. Met Ions Life Sci 12:503–528.  https://doi.org/10.1007/978-94-007-5561-1_15PubMedCrossRefGoogle Scholar
  419. Mendel RR (2013b) The molybdenum cofactor. J Biol Chem 288:13165–13172.  https://doi.org/10.1074/jbc.R113.455311PubMedPubMedCentralCrossRefGoogle Scholar
  420. Méndez C, Dobaño C (2004) Malaria and immunity. In: Handbook of nutrition and immunity. Humana Press, Totowa, NJ, pp 264–243Google Scholar
  421. Mendonça N, Gragnani A, Masako Ferreira L (2011) Burns, metabolism and nutritional requirements. Nutr Hosp 26:692–700.  https://doi.org/10.1590/S0212-16112011000400005Google Scholar
  422. Mercer JF (2001) The molecular basis of copper-transport diseases. Trends Mol Med 7:64–69PubMedCrossRefGoogle Scholar
  423. Merrill AH, Henderson JM (1990) Vitamin B6 metabolism by human liver. Ann N Y Acad Sci 585:110–117PubMedCrossRefGoogle Scholar
  424. Mertz W (1969) Chromium occurrence and function in biological systems. Physiol Rev 49:163–239PubMedCrossRefGoogle Scholar
  425. Mertz W (1993) Chromium in human nutrition: a review. J Nutr 123:626–633PubMedCrossRefGoogle Scholar
  426. Mertz W (1998) Interaction of chromium with insulin: a progress report. Nutr Rev 56:174–177PubMedCrossRefGoogle Scholar
  427. Methenitou G, Maravelias C, Athanaselis S et al (2001) Immunomodulative effects of aflatoxins and selenium on human natural killer cells. Vet Hum Toxicol 43:232–234PubMedGoogle Scholar
  428. Metz J (1992) Cobalamin deficiency and the pathogenesis of nervous system disease. Annu Rev Nutr 12:59–79.  https://doi.org/10.1146/annurev.nu.12.070192.000423PubMedCrossRefGoogle Scholar
  429. Meyer K, Jia Y, Cao W-Q et al (2002) Expression of peroxisome proliferator-activated receptor alpha, and PPARalpha regulated genes in spontaneously developed hepatocellular carcinomas in fatty acyl-CoA oxidase null mice. Int J Oncol 21:1175–1180PubMedGoogle Scholar
  430. Middleton E (1998) Effect of plant flavonoids on immune and inflammatory cell function. Adv Exp Med Biol 439:175–182PubMedCrossRefGoogle Scholar
  431. Mikami T, Kitagawa H (2013) Biosynthesis and function of chondroitin sulfate. Biochim Biophys Acta 1830:4719–4733.  https://doi.org/10.1016/j.bbagen.2013.06.006PubMedCrossRefGoogle Scholar
  432. Minehira K, Bettschart V, Vidal H et al (2003) Effect of carbohydrate overfeeding on whole body and adipose tissue metabolism in humans. Obes Res 11:1096–1103.  https://doi.org/10.1038/oby.2003.150PubMedCrossRefGoogle Scholar
  433. Mishra J, Carpenter S, Singh S (2010) Low serum zinc levels in an endemic area of visceral leishmaniasis in Bihar, India. Indian J Med Res 131:793–798PubMedGoogle Scholar
  434. Mistry HD, Broughton Pipkin F, Redman CWG, Poston L (2012) Selenium in reproductive health. Am J Obstet Gynecol 206:21–30.  https://doi.org/10.1016/j.ajog.2011.07.034PubMedCrossRefGoogle Scholar
  435. Mizock BA (2010) Immunonutrition and critical illness: an update. Nutrition 26:701–707.  https://doi.org/10.1016/j.nut.2009.11.010PubMedCrossRefGoogle Scholar
  436. Mkhize BT, Mabaso M, Mamba T et al (2017) The interaction between HIV and intestinal helminth parasites coinfection with nutrition among adults in KwaZulu-Natal, South Africa. Biomed Res Int 2017:1–12.  https://doi.org/10.1155/2017/9059523CrossRefGoogle Scholar
  437. Mocchegiani E, Costarelli L, Giacconi R et al (2012) Micronutrient (Zn, Cu, Fe)-gene interactions in ageing and inflammatory age-related diseases: implications for treatments. Ageing Res Rev 11:297–319.  https://doi.org/10.1016/j.arr.2012.01.004PubMedCrossRefGoogle Scholar
  438. Mock DM (2007) Biotin. In: Zempleni J (ed) Handbook of vitamins. Taylor & Francis, Boca Raton, FL, pp 384–361Google Scholar
  439. Mody A, Bartz S, Hornik CP et al (2014) Effects of HIV infection on the metabolic and hormonal status of children with severe acute malnutrition. PLoS One 9:e102233.  https://doi.org/10.1371/journal.pone.0102233PubMedPubMedCentralCrossRefGoogle Scholar
  440. Moffatt BA, Ashihara H (2002) Purine and pyrimidine nucleotide synthesis and metabolism. Arab B 1:e0018.  https://doi.org/10.1199/tab.0018CrossRefGoogle Scholar
  441. Molano A, Meydani SN (2012) Vitamin E, signalosomes and gene expression in T cells. Mol Aspects Med 33:55–62.  https://doi.org/10.1016/j.mam.2011.11.002PubMedCrossRefGoogle Scholar
  442. Morita R, Yamamoto I, Takada M et al (1993) Hypervitaminosis D. Nihon Rinsho 51:984–988PubMedGoogle Scholar
  443. Morris KL, Zemel MB (2005) 1, 25-Dihydroxyvitamin D 3 modulation of adipocyte glucocorticoid function. Obes Res 13:670–677.  https://doi.org/10.1038/oby.2005.75PubMedCrossRefGoogle Scholar
  444. Mucida D, Park Y, Kim G et al (2007) Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317:256–260.  https://doi.org/10.1126/science.1145697PubMedCrossRefGoogle Scholar
  445. Mueckler M, Thorens B (2013) The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med 34:121–138.  https://doi.org/10.1016/j.mam.2012.07.001PubMedPubMedCentralCrossRefGoogle Scholar
  446. Mukwevho E, Ferreira Z, Ayeleso A (2014) Potential role of sulfur-containing antioxidant systems in highly oxidative environments. Molecules 19:19376–19389.  https://doi.org/10.3390/molecules191219376PubMedCrossRefGoogle Scholar
  447. Muller DP (1986) Vitamin E-its role in neurological function. Postgrad Med J 62:107–112PubMedPubMedCentralCrossRefGoogle Scholar
  448. Mundi MS, Shah M, Hurt RT (2016) When is it appropriate to use glutamine in critical illness? Nutr Clin Pract 31:445–450.  https://doi.org/10.1177/0884533616651318PubMedCrossRefGoogle Scholar
  449. Murray PJ, Rathmell J, Pearce E (2015) SnapShot: immunometabolism. Cell Metab 22:190–190.e1.  https://doi.org/10.1016/j.cmet.2015.06.014PubMedCrossRefGoogle Scholar
  450. Nair R, Maseeh A (2012) Vitamin D: the “sunshine” vitamin. J Pharmacol Pharmacother 3:118–126.  https://doi.org/10.4103/0976-500X.95506PubMedPubMedCentralGoogle Scholar
  451. Naithani R (2008) Organoselenium compounds in cancer chemoprevention. Mini Rev Med Chem 8:657–668PubMedCrossRefGoogle Scholar
  452. National Research Council (1989) Protein and amino acids. In: Subcommittee on the Tenth Edition of the Recommended Dietary Allowances (ed) Recommended dietary allowances, 10th edn. National Academies Press (US), Washington, DCGoogle Scholar
  453. National Research Council (2000) Physiological role of copper. In: Copper in drinking water. National Academies Press (US), Washington, DCGoogle Scholar
  454. National Research Council (2005) Health implications of perchlorate ingestion. National Academies Press, Washington, DCGoogle Scholar
  455. Naveilhan P, Neveu I, Wion D, Brachet P (1996) 1,25-Dihydroxyvitamin D3, an inducer of glial cell line-derived neurotrophic factor. Neuroreport 7:2171–2175PubMedCrossRefGoogle Scholar
  456. Nayak N, Harrison EH, Hussain MM (2001) Retinyl ester secretion by intestinal cells: a specific and regulated process dependent on assembly and secretion of chylomicrons. J Lipid Res 42:272–280PubMedGoogle Scholar
  457. Neveu I, Naveilhan P, Baudet C et al (1994a) 1,25-dihydroxyvitamin D3 regulates NT-3, NT-4 but not BDNF mRNA in astrocytes. Neuroreport 6:124–126PubMedCrossRefGoogle Scholar
  458. Neveu I, Naveilhan P, Jehan F et al (1994b) 1,25-dihydroxyvitamin D3 regulates the synthesis of nerve growth factor in primary cultures of glial cells. Brain Res Mol Brain Res 24:70–76PubMedCrossRefGoogle Scholar
  459. Nilsson A, Wilhelms DB, Mirrasekhian E et al (2017) Inflammation-induced anorexia and fever are elicited by distinct prostaglandin dependent mechanisms, whereas conditioned taste aversion is prostaglandin independent. Brain Behav Immun 61:236–243.  https://doi.org/10.1016/j.bbi.2016.12.007PubMedPubMedCentralCrossRefGoogle Scholar
  460. Nimni ME, Han B, Cordoba F (2007) Are we getting enough sulfur in our diet? Nutr Metab (Lond) 4:24.  https://doi.org/10.1186/1743-7075-4-24CrossRefGoogle Scholar
  461. Norata GD, Caligiuri G, Chavakis T et al (2015) The cellular and molecular basis of translational immunometabolism. Immunity 43:421–434.  https://doi.org/10.1016/j.immuni.2015.08.023PubMedCrossRefGoogle Scholar
  462. Norman AW (2008) From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health. Am J Clin Nutr 88:491S–499SPubMedCrossRefGoogle Scholar
  463. Norman AW, Hentry HL (2007) Vitamin D. In: Zempleni J (ed) Handbook of vitamins, 4th edn. Taylor & Francis, Boca Raton, FL, pp 110–141Google Scholar
  464. Norton JE, Gonzalez Espinosa Y, Watson RL et al (2015) Functional food microstructures for macronutrient release and delivery. Food Funct 6:663–678.  https://doi.org/10.1039/c4fo00965gPubMedCrossRefGoogle Scholar
  465. Notari L, Riera DC, Sun R et al (2014) Role of macrophages in the altered epithelial function during a type 2 immune response induced by enteric nematode infection. PLoS One 9:e84763.  https://doi.org/10.1371/journal.pone.0084763PubMedPubMedCentralCrossRefGoogle Scholar
  466. Nursyam EW, Amin Z, Rumende CM (2006) The effect of vitamin D as supplementary treatment in patients with moderately advanced pulmonary tuberculous lesion. Acta Med Indones 38:3–5PubMedGoogle Scholar
  467. Nye CK, Hanson RW, Kalhan SC (2008) Glyceroneogenesis is the dominant pathway for triglyceride glycerol synthesis in vivo in the rat. J Biol Chem 283:27565–27574.  https://doi.org/10.1074/jbc.M804393200PubMedPubMedCentralCrossRefGoogle Scholar
  468. Obled C, Papet I, Breuillé D (2002) Metabolic bases of amino acid requirements in acute diseases. Curr Opin Clin Nutr Metab Care 5:189–197PubMedCrossRefGoogle Scholar
  469. Ochoa L, de Paniagua Michel J, Olmos-Soto J (2014) Complex carbohydrates as a possible source of high energy to formulate functional feeds. Adv Food Nutr Res 73:259–288.  https://doi.org/10.1016/B978-0-12-800268-1.00012-3PubMedCrossRefGoogle Scholar
  470. Oda H (2006) Functions of sulfur-containing amino acids in lipid metabolism. J Nutr 136:1666S–1669SPubMedCrossRefGoogle Scholar
  471. Ogunbileje JO, Porter C, Herndon DN et al (2016) Hypermetabolism and hypercatabolism of skeletal muscle accompany mitochondrial stress following severe burn trauma. Am J Physiol – Endocrinol Metab 311:E436–E448.  https://doi.org/10.1152/ajpendo.00535.2015PubMedPubMedCentralCrossRefGoogle Scholar
  472. Oliveira AGL, Brito PD, Schubach AO et al (2013) Influence of the nutritional status in the clinical and therapeutical evolution in adults and elderly with American Tegumentary Leishmaniasis. Acta Trop 128:36–40.  https://doi.org/10.1016/j.actatropica.2013.06.005PubMedCrossRefGoogle Scholar
  473. Olson TL, Williams JC, Allen JP (2013) Influence of protein interactions on oxidation/reduction midpoint potentials of cofactors in natural and de novo metalloproteins. Biochim Biophys Acta – Bioenerg 1827:914–922.  https://doi.org/10.1016/j.bbabio.2013.02.014CrossRefGoogle Scholar
  474. Omdahl JL, Morris HA, May BK (2002) Hydroxylase enzymes of the vitamin D pathway: expression, function, and regulation. Annu Rev Nutr 22:139–166.  https://doi.org/10.1146/annurev.nutr.22.120501.150216PubMedCrossRefGoogle Scholar
  475. Omur A, Kirbas A, Aksu E et al (2016) Effects of antioxidant vitamins (A, D, E) and trace elements (Cu, Mn, Se, Zn) on some metabolic and reproductive profiles in dairy cows during transition period. Pol J Vet Sci 19:697–706.  https://doi.org/10.1515/pjvs-2016-0088PubMedCrossRefGoogle Scholar
  476. Ortiz D, Afonso C, Hagel I et al (2000) Influencia de las infecciones helmínticas y el estado nutricional en la respuesta inmunitaria de niños venezolanos. Rev Panam Salud Pública 8:156–163.  https://doi.org/10.1590/S1020-49892000000800002PubMedCrossRefGoogle Scholar
  477. Osada J (2013) The use of transcriptomics to unveil the role of nutrients in mammalian liver. ISRN Nutr 2013:1–19.  https://doi.org/10.5402/2013/403792CrossRefGoogle Scholar
  478. Osada S, Carr BI (2000) Critical role of extracellular signal-regulated kinase (ERK) phosphorylation in novel vitamin K analog-induced cell death. Jpn J Cancer Res 91:1250–1257PubMedCrossRefGoogle Scholar
  479. Osada S, Osada K, Carr BI (2001) Tumor cell growth inhibition and extracellular signal-regulated kinase (ERK) phosphorylation by novel K vitamins. J Mol Biol 314:765–772.  https://doi.org/10.1006/jmbi.2001.5171PubMedCrossRefGoogle Scholar
  480. Osredkar J (2011) Copper and zinc, biological role and significance of copper/zinc imbalance. J Clin Toxicol.  https://doi.org/10.4172/2161-0495.s3-001
  481. Oster M, Just F, Büsing K et al (2016) Toward improved phosphorus efficiency in monogastrics-interplay of serum, minerals, bone, and immune system after divergent dietary phosphorus supply in swine. Am J Physiol Regul Integr Comp Physiol 310:R917–R925.  https://doi.org/10.1152/ajpregu.00215.2015PubMedPubMedCentralCrossRefGoogle Scholar
  482. Oster O, Prellwitz W (1990) Selenium and cardiovascular disease. Biol Trace Elem Res 24:91–103PubMedCrossRefGoogle Scholar
  483. Ott G, Havemeyer A, Clement B (2015) The mammalian molybdenum enzymes of mARC. J Biol Inorg Chem 20:265–275.  https://doi.org/10.1007/s00775-014-1216-4PubMedCrossRefGoogle Scholar
  484. Pae M, Wu D (2017) Nutritional modulation of age-related changes in the immune system and risk of infection. Nutr Res 41:14–35.  https://doi.org/10.1016/j.nutres.2017.02.001PubMedCrossRefGoogle Scholar
  485. Palmer CS, Anzinger JJ, Zhou J et al (2014) Glucose transporter 1-expressing proinflammatory monocytes are elevated in combination antiretroviral therapy-treated and untreated HIV+ subjects. J Immunol 193:5595–5603.  https://doi.org/10.4049/jimmunol.1303092PubMedCrossRefGoogle Scholar
  486. Palmer CS, Cherry CL, Sada-Ovalle I et al (2016) Glucose metabolism in T cells and monocytes: new perspectives in HIV pathogenesis. EBioMedicine 6:31–41.  https://doi.org/10.1016/j.ebiom.2016.02.012PubMedPubMedCentralCrossRefGoogle Scholar
  487. Panchal SK, Wanyonyi S, Brown L (2017) Selenium, vanadium, and chromium as micronutrients to improve metabolic syndrome. Curr Hypertens Rep 19:10.  https://doi.org/10.1007/s11906-017-0701-xPubMedCrossRefGoogle Scholar
  488. Pandolfi F, Franza L, Mandolini C, Conti P (2017) Immune modulation by vitamin D: special emphasis on its role in prevention and treatment of cancer. Clin Ther.  https://doi.org/10.1016/j.clinthera.2017.03.012
  489. Paniz C, Bertinato JF, Lucena MR et al (2017) A daily dose of 5 mg folic acid for 90 days is associated with increased serum unmetabolized folic acid and reduced natural killer cell cytotoxicity in healthy Brazilian adults. J Nutr 147:1677–1685.  https://doi.org/10.3945/jn.117.247445PubMedGoogle Scholar
  490. Pantelidou M, Tsiakitzis K, Rekka EA, Kourounakis PN (2017) Biologic stress, oxidative stress, and resistance to drugs: what is hidden behind. Molecules.  https://doi.org/10.3390/molecules22020307
  491. Papanikolaou G, Pantopoulos K (2017) Systemic iron homeostasis and erythropoiesis. IUBMB Life 69:399–413.  https://doi.org/10.1002/iub.1629PubMedCrossRefGoogle Scholar
  492. Parcell S (2002) Sulfur in human nutrition and applications in medicine. Altern Med Rev 7:22–44PubMedGoogle Scholar
  493. Park K (2015) Role of micronutrients in skin health and function. Biomol Ther (Seoul) 23:207–217.  https://doi.org/10.4062/biomolther.2015.003CrossRefGoogle Scholar
  494. Pasing Y, Fenton CG, Jorde R, Paulssen RH (2017) Changes in the human transcriptome upon vitamin D supplementation. J Steroid Biochem Mol Biol 173:93–99.  https://doi.org/10.1016/j.jsbmb.2017.03.016PubMedCrossRefGoogle Scholar
  495. Pawlowski SW, Warren CA, Guerrant R (2009) Diagnosis and treatment of acute or persistent diarrhea. Gastroenterology 136:1874–1886.  https://doi.org/10.1053/j.gastro.2009.02.072PubMedPubMedCentralCrossRefGoogle Scholar
  496. Peacock M (2010) Calcium metabolism in health and disease. Clin J Am Soc Nephrol 5(Suppl 1):S23–S30.  https://doi.org/10.2215/CJN.05910809PubMedCrossRefGoogle Scholar
  497. Pearson RD, Cox G, Jeronimo SM et al (1992) Visceral leishmaniasis: a model for infection-induced cachexia. Am J Trop Med Hyg 47:8–15PubMedCrossRefGoogle Scholar
  498. Pennington JAT (2003) Iodine|Physiology. In: Encyclopedia of food sciences and nutrition. Elsevier, London, pp 3357–3360CrossRefGoogle Scholar
  499. Penniston KL, Tanumihardjo SA (2006) The acute and chronic toxic effects of vitamin A. Am J Clin Nutr 83:191–201PubMedCrossRefGoogle Scholar
  500. Pereira GAP, Genaro PS, Pinheiro MM et al (2009) Cálcio dietético: estratégias para otimizar o consumo. Rev Bras Reumatol 49:164–171.  https://doi.org/10.1590/S0482-50042009000200008CrossRefGoogle Scholar
  501. Pérez-Cano FJ, Yaqoob P, Martín R et al (2012) Immunonutrition in early life: diet and immune development. Clin Dev Immunol 2012:1–2.  https://doi.org/10.1155/2012/207509Google Scholar
  502. Pérez-Cano F, Castell M (2016) Flavonoids, inflammation and immune system. Nutrients 8:659.  https://doi.org/10.3390/nu8100659PubMedCentralCrossRefGoogle Scholar
  503. Pérez-López FR (2007) Vitamin D: the secosteroid hormone and human reproduction. Gynecol Endocrinol 23:13–24PubMedCrossRefGoogle Scholar
  504. Pérez H, Malavé I, Arredondo B (1979) The effects of protein malnutrition on the course of Leishmania mexicana infection in C57Bl/6 mice: nutrition and susceptibility to leishmaniasis. Clin Exp Immunol 38:453–460PubMedPubMedCentralGoogle Scholar
  505. Petrović J, Stanić D, Dmitrašinović G et al (2016) Magnesium supplementation diminishes peripheral blood lymphocyte DNA oxidative damage in athletes and sedentary young man. Oxid Med Cell Longev 2016:2019643.  https://doi.org/10.1155/2016/2019643PubMedPubMedCentralCrossRefGoogle Scholar
  506. Phillips C (2013) Nutrigenetics and metabolic disease: current status and implications for personalised nutrition. Nutrients 5:32–57.  https://doi.org/10.3390/nu5010032PubMedPubMedCentralCrossRefGoogle Scholar
  507. Picó C, Pons A, Palou A (1991) A significant pool of amino acids is adsorbed on blood cell membranes. Biosci Rep 11:223–230PubMedCrossRefGoogle Scholar
  508. Pieczynska J, Grajeta H (2015) The role of selenium in human conception and pregnancy. J Trace Elem Med Biol 29:31–38.  https://doi.org/10.1016/j.jtemb.2014.07.003PubMedCrossRefGoogle Scholar
  509. Pike JW, Meyer MB (2010) The vitamin D receptor: new paradigms for the regulation of gene expression by 1,25-Dihydroxyvitamin D3. Endocrinol Metab Clin North Am 39:255–269.  https://doi.org/10.1016/j.ecl.2010.02.007PubMedPubMedCentralCrossRefGoogle Scholar
  510. Pierre JF, Heneghan AF, Lawson CM et al (2013) Pharmaconutrition review: physiological mechanisms. JPEN J Parenter Enteral Nutr 37:51S–65S.  https://doi.org/10.1177/0148607113493326PubMedCrossRefGoogle Scholar
  511. Plank LD, Hill GL (2000) Sequential metabolic changes following induction of systemic inflammatory response in patients with severe sepsis or major blunt trauma. World J Surg 24:630–638PubMedCrossRefGoogle Scholar
  512. Ploder M, Kurz K, Spittler A et al (2010) Early increase of plasma homocysteine in sepsis patients with poor outcome. Mol Med 16:498–504.  https://doi.org/10.2119/molmed.2010.00008PubMedPubMedCentralCrossRefGoogle Scholar
  513. Plummer MP, Deane AM (2016) Dysglycemia and glucose control during sepsis. Clin Chest Med 37:309–319.  https://doi.org/10.1016/j.ccm.2016.01.010PubMedCrossRefGoogle Scholar
  514. Pohl HR, Wheeler JS, Murray HE (2013) Sodium and potassium in health and disease. In: Sigel A, Sigel H, Sigel RKO (eds) Interrelations between essential metal ions and human diseases. Springer Netherlands, Dordrecht, pp 29–47CrossRefGoogle Scholar
  515. Powers HJ (2003) Riboflavin (vitamin B-2) and health. Am J Clin Nutr 77:1352–1360PubMedCrossRefGoogle Scholar
  516. Preiser J-C, van Zanten A, Berger MM et al (2015) Metabolic and nutritional support of critically ill patients: consensus and controversies. Crit Care 19:35.  https://doi.org/10.1186/s13054-015-0737-8PubMedPubMedCentralCrossRefGoogle Scholar
  517. Proenza AM, Palou A, Roca P (1994) Amino acid distribution in human blood. A significant pool of amino acids is adsorbed onto blood cell membranes. Biochem Mol Biol Int 34:971–982PubMedGoogle Scholar
  518. Pulido-Moran M, Moreno-Fernandez J, Ramirez-Tortosa C, Ramirez-Tortosa M (2016) Curcumin and health. Molecules 21:264.  https://doi.org/10.3390/molecules21030264PubMedCrossRefGoogle Scholar
  519. Puthucheary ZA, Rawal J, McPhail M et al (2013) Acute skeletal muscle wasting in critical illness. JAMA 310:1591–1600.  https://doi.org/10.1001/jama.2013.278481PubMedCrossRefGoogle Scholar
  520. Quera PR, Quigley EMM, Madrid SAM (2005) Small intestinal bacterial overgrowth. An update. Rev Med Chil 133:1361–1370.  https://doi.org/10.4067/S0034-98872005001100013CrossRefGoogle Scholar
  521. Rahman K (2007) Studies on free radicals, antioxidants, and co-factors. Clin Interv Aging 2:219–236PubMedPubMedCentralGoogle Scholar
  522. Rajagopalan KV (1988) Molybdenum: an essential trace element in human nutrition. Annu Rev Nutr 8:401–427.  https://doi.org/10.1146/annurev.nu.08.070188.002153PubMedCrossRefGoogle Scholar
  523. Ramakrishnan U, Webb AL, Ologoudou K (2004) Infection, immunity, and vitamins. In: Handbook of nutrition and immunity. Humana Press, Totowa, NJ, pp 116–193Google Scholar
  524. Ramig RF (2004) Pathogenesis of intestinal and systemic rotavirus infection. J Virol 78:10213–10220.  https://doi.org/10.1128/JVI.78.19.10213-10220.2004PubMedPubMedCentralCrossRefGoogle Scholar
  525. Ramos D, Mar D, Ishida M et al (2016) Mechanism of copper uptake from blood plasma ceruloplasmin by mammalian cells. PLoS One 11:e0149516.  https://doi.org/10.1371/journal.pone.0149516PubMedPubMedCentralCrossRefGoogle Scholar
  526. Rao S, Schieber AMP, O’Connor CP et al (2017) Pathogen-mediated inhibition of anorexia promotes host survival and transmission. Cell 168:503–516.e12.  https://doi.org/10.1016/j.cell.2017.01.006PubMedPubMedCentralCrossRefGoogle Scholar
  527. Rasool S, Abid S, Iqbal M et al (2012) Relationship between vitamin B12, folate and homocysteine levels and H. Pylori infection in patients with functional dyspepsia: a cross-section study. BMC Res Notes 5:206.  https://doi.org/10.1186/1756-0500-5-206PubMedPubMedCentralCrossRefGoogle Scholar
  528. Rathmell JC, Vander Heiden MG, Harris MH et al (2000) In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability. Mol Cell 6:683–692PubMedCrossRefGoogle Scholar
  529. Raverdeau M, Mills KHG (2014) Modulation of T cell and innate immune responses by retinoic Acid. J Immunol 192:2953–2958.  https://doi.org/10.4049/jimmunol.1303245PubMedCrossRefGoogle Scholar
  530. Rayman MP (2012) Selenium and human health. Lancet 379:1256–1268.  https://doi.org/10.1016/S0140-6736(11)61452-9PubMedCrossRefGoogle Scholar
  531. Rebouche CJ (1991) Ascorbic acid and carnitine biosynthesis. Am J Clin Nutr 54:1147S–1152SPubMedCrossRefGoogle Scholar
  532. Reboul E (2013) Absorption of vitamin A and carotenoids by the enterocyte: focus on transport proteins. Nutrients 5:3563–3581.  https://doi.org/10.3390/nu5093563PubMedPubMedCentralCrossRefGoogle Scholar
  533. Redmond HP, Stapleton PP, Neary P, Bouchier-Hayes D (1998) Immunonutrition: the role of taurine. Nutrition 14:599–604PubMedCrossRefGoogle Scholar
  534. Reeds PJ (2000) Dispensable and indispensable amino acids for humans. J Nutr 130:1835S–1840SPubMedCrossRefGoogle Scholar
  535. Reichrath J, Lehmann B, Carlberg C et al (2007) Vitamins as hormones. Horm Metab Res 39:71–84.  https://doi.org/10.1055/s-2007-958715PubMedCrossRefGoogle Scholar
  536. Reithinger R, Teodoro U, Davies CR (2001) Topical insecticide treatments to protect dogs from sand fly vectors of leishmaniasis. Emerg Infect Dis 7:872–876.  https://doi.org/10.3201/eid0705.017516PubMedPubMedCentralCrossRefGoogle Scholar
  537. Reza Dorosty-Motlagh A, Mohammadzadeh Honarvar N, Sedighiyan M, Abdolahi M (2016) The molecular mechanisms of vitamin A deficiency in multiple sclerosis. J Mol Neurosci 60:82–90.  https://doi.org/10.1007/s12031-016-0781-0PubMedCrossRefGoogle Scholar
  538. Rhee EP (2015) Metabolomics and renal disease. Curr Opin Nephrol Hypertens 24:371–379.  https://doi.org/10.1097/MNH.0000000000000136PubMedPubMedCentralGoogle Scholar
  539. Rijal S, Uranw S, Chappuis F et al (2010) Epidemiology of Leishmania donovani infection in high-transmission foci in Nepal. Trop Med Int Health 15(Suppl 2):21–28.  https://doi.org/10.1111/j.1365-3156.2010.02518.xPubMedCrossRefGoogle Scholar
  540. Rimbach G, Minihane AM, Majewicz J et al (2002) Regulation of cell signalling by vitamin E. Proc Nutr Soc 61:415–425PubMedCrossRefGoogle Scholar
  541. Rink L, Gabriel P (2000) Zinc and the immune system. Proc Nutr Soc 59:541–552PubMedCrossRefGoogle Scholar
  542. Risco D, Salguero FJ, Cerrato R et al (2016) Association between vitamin D supplementation and severity of tuberculosis in wild boar and red deer. Res Vet Sci 108:116–119.  https://doi.org/10.1016/j.rvsc.2016.08.003PubMedCrossRefGoogle Scholar
  543. Rivlin RS (2007) Riboflavin (vitamin B2). In: Zempleni J (ed) Handbook of vitamins. Taylor & Francis, Boca Raton, FL, pp 252–233Google Scholar
  544. Rocha KC, Vieira ML, Beltrame RL et al (2016) Impact of selenium supplementation in neutropenia and immunoglobulin production in childhood cancer patients. J Med Food 19:560–568.  https://doi.org/10.1089/jmf.2015.0145PubMedCrossRefGoogle Scholar
  545. Rodgers JB (1998) n-3 Fatty acids in the treatment of ulcerative colitis. In: Kremer JM (ed) Medicinal fatty acids in inflammation. Birkhauser Verlag, Basel, pp 1090–1103Google Scholar
  546. Romão MJ, Rösch N, Huber R (1997) The molybdenum site in the xanthine oxidase-related aldehyde oxidoreductase from Desulfovibrio gigas and a catalytic mechanism for this class of enzymes. J Biol Inorg Chem 2:782–785.  https://doi.org/10.1007/s007750050195CrossRefGoogle Scholar
  547. Romeo J, Nova E, Wärnberg J et al (2010) Immunomodulatory effect of fibres, probiotics and symbiotics in different life-stages. Nutr Hosp 25:341–349PubMedGoogle Scholar
  548. Roodenburg AJ, West CE, Beguin Y et al (2000) Indicators of erythrocyte formation and degradation in rats with either vitamin A or iron deficiency. J Nutr Biochem 11:223–230PubMedCrossRefGoogle Scholar
  549. Roohani N, Hurrell R, Kelishadi R, Schulin R (2013) Zinc and its importance for human health: an integrative review. J Res Med Sci 18:144–157PubMedPubMedCentralGoogle Scholar
  550. Rosa C d OB, dos Santos CA, Leite JIA et al (2015) Impact of nutrients and food components on dyslipidemias: what is the evidence? Adv Nutr 6:703–711.  https://doi.org/10.3945/an.115.009480PubMedCentralCrossRefGoogle Scholar
  551. Ross A (2006) Vitamin A and carotenoids. In: Shils M, Shike M, Ross A et al (eds) Modern nutrition in health and disease. Lippincott Williams & Wilkins, Baltimore, MD, pp 351–375Google Scholar
  552. Ross AC, Harrison EH (2007) Vitamin A: nutritional aspects of retinoids and carotenoids. In: Zempleni J (ed) Handbook of vitamins, 4th edn. Taylor & Francis, Boca Raton, FL, pp 41–41Google Scholar
  553. Ross AC, Ternus ME (1993) Vitamin A as a hormone: recent advances in understanding the actions of retinol, retinoic acid, and beta carotene. J Am Diet Assoc 93:1285–1290PubMedCrossRefGoogle Scholar
  554. Ross C (2010) Vitamin A. In: Coates PM, Betz JM, Blackman MR et al (eds) Encyclopedia of dietary supplements, 2nd edn. Informa Healthcare, London/New York, pp 778–791CrossRefGoogle Scholar
  555. Rousset B, Dupuy C, Miot F, Dumont J (2000) Thyroid hormone synthesis and secretion. MDText.com, Inc, Dartmouth, MA. EndotextGoogle Scholar
  556. Roveran Genga K, Lo C, Cirstea M et al (2017) Two-year follow-up of patients with septic shock presenting with low HDL: the effect upon acute kidney injury, death and estimated glomerular filtration rate. J Intern Med 281:518–529.  https://doi.org/10.1111/joim.12601PubMedCrossRefGoogle Scholar
  557. Rowe L, Wills ED (1976) The effect of dietary lipids and vitamin E on lipid peroxide formation, cytochrome P-450 and oxidative demethylation in the endoplasmic reticulum. Biochem Pharmacol 25:175–179.  https://doi.org/10.1016/0006-2952(76)90287-2PubMedCrossRefGoogle Scholar
  558. Rukunuzzaman M, Rahman M (2008) Epidemiological study of risk factors related to childhood visceral leishmaniasis. Mymensingh Med J 17:46–50PubMedGoogle Scholar
  559. Ruz M (2003) Zinc|Properties and determination. In: Encyclopedia of food sciences and nutrition. Elsevier, London, pp 6267–6272CrossRefGoogle Scholar
  560. Said HM (2008) Cell and molecular aspects of human intestinal biotin absorption. J Nutr 139:158–162.  https://doi.org/10.3945/jn.108.092023PubMedCrossRefGoogle Scholar
  561. Said HM (2011) Intestinal absorption of water-soluble vitamins in health and disease. Biochem J 437:357–372.  https://doi.org/10.1042/BJ20110326PubMedPubMedCentralCrossRefGoogle Scholar
  562. Sandstead HH (1994) Understanding zinc: recent observations and interpretations. J Lab Clin Med 124:322–327PubMedGoogle Scholar
  563. Sarrazin S, Lamanna WC, Esko JD (2011) Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol 3:a004952–a004952.  https://doi.org/10.1101/cshperspect.a004952PubMedPubMedCentralCrossRefGoogle Scholar
  564. Schaible UE, Kaufmann SHE (2007) Malnutrition and infection: complex mechanisms and global impacts. PLoS Med 4:e115.  https://doi.org/10.1371/journal.pmed.0040115PubMedPubMedCentralCrossRefGoogle Scholar
  565. Schindelin H, Kisker C, Hilton J et al (1996) Crystal structure of DMSO reductase: redox-linked changes in molybdopterin coordination. Science 272:1615–1621PubMedCrossRefGoogle Scholar
  566. Schmidt RL, Simonović M (2012) Synthesis and decoding of selenocysteine and human health. Croat Med J 53:535–550.  https://doi.org/10.3325/cmj.2012.53.535PubMedPubMedCentralCrossRefGoogle Scholar
  567. Schwager J, Bompard A, Weber P, Raederstorff D (2015) Ascorbic acid modulates cell migration in differentiated HL-60 cells and peripheral blood leukocytes. Mol Nutr Food Res 59:1513–1523.  https://doi.org/10.1002/mnfr.201400893PubMedCrossRefGoogle Scholar
  568. Schwalfenberg GK (2017) Vitamins K1 and K2: the emerging group of vitamins required for human health. J Nutr Metab 2017:6254836.  https://doi.org/10.1155/2017/6254836PubMedPubMedCentralCrossRefGoogle Scholar
  569. Schweizer U, Schlicker C, Braun D et al (2014) Crystal structure of mammalian selenocysteine-dependent iodothyronine deiodinase suggests a peroxiredoxin-like catalytic mechanism. Proc Natl Acad Sci USA 111:10526–10531.  https://doi.org/10.1073/pnas.1323873111PubMedPubMedCentralCrossRefGoogle Scholar
  570. Scrimshaw NS (2007) Prologue: historical introduction. Immunonutrition in health and disease. Br J Nutr 98(Suppl 1):S3–S4.  https://doi.org/10.1017/S0007114507833034PubMedGoogle Scholar
  571. Sealey JE, Clark I, Bull MB, Laragh JH (1970) Potassium balance and the control of renin secretion. J Clin Invest 49:2119–2127.  https://doi.org/10.1172/JCI106429PubMedPubMedCentralCrossRefGoogle Scholar
  572. Seetharam B (1999) Receptor-mediated endocytosis of cobalamin (vitamin B12). Annu Rev Nutr 19:173–195.  https://doi.org/10.1146/annurev.nutr.19.1.173PubMedCrossRefGoogle Scholar
  573. Sekowska A, Kung HF, Danchin A (2000) Sulfur metabolism in Escherichia coli and related bacteria: facts and fiction. J Mol Microbiol Biotechnol 2:145–177PubMedGoogle Scholar
  574. Selmi C, Invernizzi P, Zuin M et al (2004) Evaluation of the immune function in the nutritionally at-risk patient. In: Handbook of nutrition and immunity. Humana Press, Totowa, NJ, pp 1–19Google Scholar
  575. Semba RD, Darnton-Hill I, de Pee S (2010) Addressing tuberculosis in the context of malnutrition and HIV coinfection. Food Nutr Bull 31:S345–S364CrossRefGoogle Scholar
  576. Sergeant S, Rahbar E, Chilton FH (2016) Gamma-linolenic acid, dihommo-gamma linolenic, eicosanoids and inflammatory processes. Eur J Pharmacol 785:77–86.  https://doi.org/10.1016/j.ejphar.2016.04.020PubMedPubMedCentralCrossRefGoogle Scholar
  577. Serrano-Villar S, Vásquez-Domínguez E, Pérez-Molina JA et al (2017) HIV, HPV, and microbiota: partners in crime? AIDS 31:591–594.  https://doi.org/10.1097/QAD.0000000000001352PubMedCrossRefGoogle Scholar
  578. Serrano-Villar S, Vázquez-Castellanos JF, Vallejo A et al (2016) The effects of prebiotics on microbial dysbiosis, butyrate production and immunity in HIV-infected subjects. Mucosal Immunol.  https://doi.org/10.1038/mi.2016.122
  579. Shanahan CM, Proudfoot D, Farzaneh-Far A, Weissberg PL (1998) The role of Gla proteins in vascular calcification. Crit Rev Eukaryot Gene Expr 8:357–375PubMedCrossRefGoogle Scholar
  580. Shane B (2008) Folate and vitamin B12 metabolism: overview and interaction with riboflavin, vitamin B6, and polymorphisms. Food Nutr Bull 29:S5–16–9.  https://doi.org/10.1177/15648265080292S103PubMedCrossRefGoogle Scholar
  581. Shea-Donohue T, Qin B, Smith A (2017) Parasites, nutrition, immune responses and biology of metabolic tissues. Parasite Immunol 39:e12422.  https://doi.org/10.1111/pim.12422CrossRefGoogle Scholar
  582. Shearer MJ, Fu X, Booth SL (2012) Vitamin K nutrition, metabolism, and requirements: current concepts and future research. Adv Nutr 3:182–195.  https://doi.org/10.3945/an.111.001800PubMedPubMedCentralCrossRefGoogle Scholar
  583. Shearer MJ, Newman P (2008) Metabolism and cell biology of vitamin K. Thromb Haemost 100:530–547PubMedCrossRefGoogle Scholar
  584. Sheridan PA, Beck MA (2008) The immune response to herpes simplex virus encephalitis in mice is modulated by dietary vitamin E. J Nutr 138:130–137PubMedPubMedCentralCrossRefGoogle Scholar
  585. Shi LZ, Wang R, Huang G et al (2011) HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med 208:1367–1376.  https://doi.org/10.1084/jem.20110278PubMedPubMedCentralCrossRefGoogle Scholar
  586. Shilotri PG, Bhat KS (1977) Effect of mega doses of vitamin C on bactericidal ativity of leukocytes. Am J Clin Nutr 30:1077–1081PubMedCrossRefGoogle Scholar
  587. Shils ME, Shike M (2006) Modern nutrition in health and disease, 10th edn. Lippincott Williams & Wilkins, Philadelphia, PAGoogle Scholar
  588. Sies H (1993) Strategies of antioxidant defense. Eur J Biochem 215:213–219PubMedCrossRefGoogle Scholar
  589. Simsek T, Uzelli Simsek H, Canturk NZ (2014) Response to trauma and metabolic changes: posttraumatic metabolism. Turkish J Surg 30:153–159.  https://doi.org/10.5152/UCD.2014.2653CrossRefGoogle Scholar
  590. Singh R, Gopalan S, Sibal A (2002) Immunonutrition. Indian J Pediatr 69:417–419PubMedCrossRefGoogle Scholar
  591. Sjögren M, Alkemade A, Mittag J et al (2007) Hypermetabolism in mice caused by the central action of an unliganded thyroid hormone receptor ?1. EMBO J 26:4535–4545.  https://doi.org/10.1038/sj.emboj.7601882PubMedPubMedCentralCrossRefGoogle Scholar
  592. Sladek R, Rocheleau G, Rung J et al (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445:881–885.  https://doi.org/10.1038/nature05616PubMedCrossRefGoogle Scholar
  593. Smedberg M, Wernerman J (2016) Is the glutamine story over? Crit Care 20:361.  https://doi.org/10.1186/s13054-016-1531-yPubMedPubMedCentralCrossRefGoogle Scholar
  594. Smith E, Morowitz HJ (2004) Universality in intermediary metabolism. Proc Natl Acad Sci 101:13168–13173.  https://doi.org/10.1073/pnas.0404922101PubMedPubMedCentralCrossRefGoogle Scholar
  595. Smith FR, Goodman DS (1976) Vitamin A transport in human vitamin A toxicity. N Engl J Med 294:805–808.  https://doi.org/10.1056/NEJM197604082941503PubMedCrossRefGoogle Scholar
  596. Smith RM (1987) Cobalt. In: Trace elements in human and animal nutrition. Elsevier, Burlington, pp 143–183CrossRefGoogle Scholar
  597. Smyth PPA (2003) Role of iodine in antioxidant defence in thyroid and breast disease. Biofactors 19:121–130PubMedCrossRefGoogle Scholar
  598. Soda K, Oikawa T, Esaki N (1999) Vitamin B6 enzymes participating in selenium amino acid metabolism. Biofactors 10:257–262PubMedCrossRefGoogle Scholar
  599. Solomons NW (2003) Zinc|Physiology. In: Encyclopedia of food sciences and nutrition. Elsevier, London, pp 6272–6277CrossRefGoogle Scholar
  600. Soong L, Henard CA, Melby PC (2012) Immunopathogenesis of non-healing American cutaneous leishmaniasis and progressive visceral leishmaniasis. Semin Immunopathol 34:735–751.  https://doi.org/10.1007/s00281-012-0350-8PubMedPubMedCentralCrossRefGoogle Scholar
  601. Souto PA, Marcotegui AR, Orbea L et al (2016) Hepatic encephalopathy: ever closer to its big bang. World J Gastroenterol 22:9251–9256.  https://doi.org/10.3748/wjg.v22.i42.9251PubMedPubMedCentralCrossRefGoogle Scholar
  602. Srivastava A, Philip N, Hughes KR et al (2016) Stage-specific changes in plasmodium metabolism required for differentiation and adaptation to different host and vector environments. PLoS Pathog 12:e1006094.  https://doi.org/10.1371/journal.ppat.1006094PubMedPubMedCentralCrossRefGoogle Scholar
  603. Starr LM, Scott ME, Koski KG (2015) Protein deficiency and intestinal nematode infection in pregnant mice differentially impact fetal growth through specific stress hormones, growth factors, and cytokines. J Nutr 145:41–50.  https://doi.org/10.3945/jn.114.202630PubMedCrossRefGoogle Scholar
  604. Stehle P, Ellger B, Kojic D et al (2017) Glutamine dipeptide-supplemented parenteral nutrition improves the clinical outcomes of critically ill patients: a systematic evaluation of randomised controlled trials. Clin Nutr ESPEN 17:75–85.  https://doi.org/10.1016/j.clnesp.2016.09.007PubMedCrossRefGoogle Scholar
  605. Stein TP, Nutinsky C, Condoluci D et al (1990) Protein and energy substrate metabolism in AIDS patients. Metabolism 39:876–881PubMedCrossRefGoogle Scholar
  606. Steinbrenner H, Al-Quraishy S, Dkhil MA et al (2015) Dietary selenium in adjuvant therapy of viral and bacterial infections. Adv Nutr 6:73–82.  https://doi.org/10.3945/an.114.007575PubMedPubMedCentralCrossRefGoogle Scholar
  607. Stettler N, Schutz Y, Whitehead R, Jéquier E (1992) Effect of malaria and fever on energy metabolism in Gambian children. Pediatr Res 31:102–106.  https://doi.org/10.1203/00006450-199202000-00002PubMedCrossRefGoogle Scholar
  608. Stocker A, Azzi A (2000) Tocopherol-binding proteins: their function and physiological significance. Antioxid Redox Signal 2:397–404.  https://doi.org/10.1089/15230860050192170PubMedCrossRefGoogle Scholar
  609. Stone MS, Martyn L, Weaver CM (2016) Potassium intake, bioavailability, hypertension, and glucose control. Nutrients 8(7):444.  https://doi.org/10.3390/nu8070444PubMedCentralCrossRefGoogle Scholar
  610. Ströhle A, Hahn A (2009) Vitamin C and immune function. Med Monatsschr Pharm 32:49–54–6PubMedGoogle Scholar
  611. Ströhle A, Wolters M, Hahn A (2011) Micronutrients at the interface between inflammation and infection-ascorbic acid and calciferol. Part 2: calciferol and the significance of nutrient supplements. Inflamm Allergy Drug Targets 10:64–74PubMedCrossRefGoogle Scholar
  612. Sukhotnik I, Krausz MM, Sabo E et al (2003) Endotoxemia inhibits intestinal adaptation in a rat model of short bowel syndrome. Shock 19:66–70PubMedCrossRefGoogle Scholar
  613. Suksomboon N, Poolsup N, Darli Ko Ko H (2017) Effect of vitamin K supplementation on insulin sensitivity: a meta-analysis. Diabetes Metab Syndr Obes 10:169–177.  https://doi.org/10.2147/DMSO.S137571PubMedPubMedCentralCrossRefGoogle Scholar
  614. Sun X, Zemel MB (2007) 1Alpha,25-dihydroxyvitamin D3 modulation of adipocyte reactive oxygen species production. Obesity (Silver Spring) 15:1944–1953.  https://doi.org/10.1038/oby.2007.232CrossRefGoogle Scholar
  615. Suttie JW (2007) Vitamin K. In: Zempleni J (ed) Handbook of vitamins. Taylor & Francis, Boca Raton, FL, pp 152–111Google Scholar
  616. Suzuki H, Hisamatsu T, Chiba S et al (2016) Glycolytic pathway affects differentiation of human monocytes to regulatory macrophages. Immunol Lett 176:18–27.  https://doi.org/10.1016/j.imlet.2016.05.009PubMedCrossRefGoogle Scholar
  617. Swift LL, Hill JO, Peters JC, Greene HL (1990) Medium-chain fatty acids: evidence for incorporation into chylomicron triglycerides in humans. Am J Clin Nutr 52:834–836PubMedCrossRefGoogle Scholar
  618. Szymańska R, Nowicka B, Kruk J (2017) Vitamin E – occurrence, biosynthesis by plants and functions in human nutrition. Mini Rev Med Chem 17:1039–1052.  https://doi.org/10.2174/1389557516666160725094819PubMedCrossRefGoogle Scholar
  619. Szymczak I, Pawliczak R (2016) The active metabolite of vitamin D3 as a potential immunomodulator. Scand J Immunol 83:83–91.  https://doi.org/10.1111/sji.12403PubMedCrossRefGoogle Scholar
  620. Tanaka K, Tanabe K, Nishii N et al (2017) Sustained tubulointerstitial inflammation in kidney with severe leptospirosis. Intern Med 56:1179–1184.  https://doi.org/10.2169/internalmedicine.56.8084PubMedPubMedCentralCrossRefGoogle Scholar
  621. Tanumihardjo SA (2011) Vitamin A: biomarkers of nutrition for development. Am J Clin Nutr 94:658S–665S.  https://doi.org/10.3945/ajcn.110.005777PubMedPubMedCentralCrossRefGoogle Scholar
  622. Tanumihardjo SA, Russell RM, Stephensen CB et al (2016) Biomarkers of Nutrition for Development (BOND)-vitamin A review. J Nutr 146:1816S–1848S.  https://doi.org/10.3945/jn.115.229708PubMedPubMedCentralCrossRefGoogle Scholar
  623. Tarp U, Overvad K, Thorling EB et al (1985) Selenium treatment in rheumatoid arthritis. Scand J Rheumatol 14:364–368PubMedCrossRefGoogle Scholar
  624. Taylor DM (1962) The absorption of cobalt from the gastrointestinal tract of the rat. Phys Med Biol 6:445–451PubMedCrossRefGoogle Scholar
  625. Taylor DN, Hamer DH, Shlim DR (2017) Medications for the prevention and treatment of travellers’ diarrhea. J Travel Med 24:S17–S22.  https://doi.org/10.1093/jtm/taw097PubMedCrossRefGoogle Scholar
  626. Tekwani BL, Tripathi LM, Mukerjee S et al (1987) Impairment of the hepatic microsomal drug-metabolizing system in rats parasitized with Nippostrongylus brasiliensis. Biochem Pharmacol 36:1383–1386PubMedCrossRefGoogle Scholar
  627. The editors (2004) Preface: carnitine: lessons from one hundred years of research. Ann N Y Acad Sci 1033:ix–xi.  https://doi.org/10.1196/annals.1320.019CrossRefGoogle Scholar
  628. Thijssen HH, Drittij-Reijnders MJ (1996) Vitamin K status in human tissues: tissue-specific accumulation of phylloquinone and menaquinone-4. Br J Nutr 75:121–127PubMedCrossRefGoogle Scholar
  629. Thomson CD (2003) Selenium|Physiology. In: Encyclopedia of food sciences and nutrition. Elsevier, London, pp 5117–5124CrossRefGoogle Scholar
  630. Thurnham DI (2005) Thiamin|Physiology. In: Encyclopedia of human nutrition. Elsevier, London, pp 263–269CrossRefGoogle Scholar
  631. Toussaint ND, Damasiewicz MJ (2017) Do the benefits of using calcitriol and other vitamin D receptor activators in patients with chronic kidney disease outweigh the harms? Nephrology (Carlton) 22(Suppl 2):51–56.  https://doi.org/10.1111/nep.13026CrossRefGoogle Scholar
  632. Traber MG (2007) Vitamin E. In: Zempleni J (ed) Handbook of vitamins. Taylor & Francis, Boca Raton, FL, pp 174–153Google Scholar
  633. Trager W (1974) Some aspects of intracellular parasitism. Science 183:269–273PubMedCrossRefGoogle Scholar
  634. Traore FA, Sako FB, Sylla D et al (2016) Tetanus in women of childbearing age in the infectious disease department in the national hospital of Conakry (Guinea). Med Sante Trop 26:323–325.  https://doi.org/10.1684/mst.2016.0594PubMedGoogle Scholar
  635. Trumbo PR (2006) Pantothenic Acid. In: Shils ME, Shike M, Ross AC et al (eds) Modern nutrition in health and disease. Lippincott Williams & Wilkins, Philadelphia, PA, pp 462–467Google Scholar
  636. Tsukaguchi H, Tokui T, Mackenzie B et al (1999) A family of mammalian Na+-dependent L-ascorbic acid transporters. Nature 399:70–75.  https://doi.org/10.1038/19986PubMedCrossRefGoogle Scholar
  637. Uysal S, Tunalı V, Akdur Öztürk E et al (2016) Incidence of parasitic diarrhea in patients with common variable immune deficiency. Turkiye Parazitol Derg 40:67–71.  https://doi.org/10.5152/tpd.2016.4687PubMedCrossRefGoogle Scholar
  638. Valko M, Leibfritz D, Moncol J et al (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84.  https://doi.org/10.1016/j.biocel.2006.07.001PubMedCrossRefGoogle Scholar
  639. van Gool CJAW, Zeegers MPA, Thijs C (2004) Oral essential fatty acid supplementation in atopic dermatitis-a meta-analysis of placebo-controlled trials. Br J Dermatol 150:728–740.  https://doi.org/10.1111/j.0007-0963.2004.05851.xPubMedCrossRefGoogle Scholar
  640. Van Lettow M, Fawzi WW, Semba PH, Semba RD (2003) Triple trouble: the role of malnutrition in tuberculosis and human immunodeficiency virus co-infection. Nutr Rev 61:81–90.  https://doi.org/10.1301/nr.2003.marr.81-90PubMedCrossRefGoogle Scholar
  641. van Niekerk G, Isaacs AW, Nell T, Engelbrecht A-M (2016) Sickness-associated anorexia: mother nature’s idea of immunonutrition? Mediators Inflamm 2016:1–12.  https://doi.org/10.1155/2016/8071539CrossRefGoogle Scholar
  642. Vanderhoof JA (1998) Immunonutrition: the role of carbohydrates. Nutrition 14:595–598PubMedCrossRefGoogle Scholar
  643. Vetvicka V, Vetvickova J (2016) Concept of immuno-nutrition. J Nutr Food Sci.  https://doi.org/10.4172/2155-9600.1000500
  644. Viegas CSB, Costa RM, Santos L et al (2017) Gla-rich protein function as an anti-inflammatory agent in monocytes/macrophages: Implications for calcification-related chronic inflammatory diseases. PLoS One 12:e0177829.  https://doi.org/10.1371/journal.pone.0177829PubMedPubMedCentralCrossRefGoogle Scholar
  645. Viegas CSB, Herfs M, Rafael MS et al (2014) Gla-rich protein is a potential new vitamin K target in cancer: evidences for a direct GRP-mineral interaction. Biomed Res Int 2014:1–14.  https://doi.org/10.1155/2014/340216CrossRefGoogle Scholar
  646. Viegas CSB, Simes DC, Laizé V et al (2008) Gla-rich protein (GRP), a new vitamin K-dependent protein identified from sturgeon cartilage and highly conserved in vertebrates. J Biol Chem 283:36655–36664.  https://doi.org/10.1074/jbc.M802761200PubMedPubMedCentralCrossRefGoogle Scholar
  647. Vormann J (2003) Magnesium: nutrition and metabolism. Mol Aspects Med 24:27–37PubMedCrossRefGoogle Scholar
  648. Wahib AA, El-Nasr MSS, Mangoud AM et al (2006) The liver profile in patients with hepatitis C virus and/or fascioliasis. J Egypt Soc Parasitol 36:405–440PubMedGoogle Scholar
  649. Waldrop GL (2015) Biotin. In: eLS. Wiley, Chichester, UKGoogle Scholar
  650. Wallace FA, Miles EA, Evans C et al (2001) Dietary fatty acids influence the production of Th1- but not Th2-type cytokines. J Leukoc Biol 69:449–457PubMedGoogle Scholar
  651. Walsh C, Fisher J, Spencer R et al (1978) Chemical and enzymatic properties of riboflavin analogues. Biochemistry 17:1942–1951PubMedCrossRefGoogle Scholar
  652. Walther B, Karl JP, Booth SL, Boyaval P (2013) Menaquinones, bacteria, and the food supply: the relevance of dairy and fermented food products to vitamin K requirements. Adv Nutr 4:463–473.  https://doi.org/10.3945/an.113.003855PubMedPubMedCentralCrossRefGoogle Scholar
  653. Wanders D, Judd RL (2011) Future of GPR109A agonists in the treatment of dyslipidaemia. Diabetes Obes Metab 13:685–691.  https://doi.org/10.1111/j.1463-1326.2011.01400.xPubMedCrossRefGoogle Scholar
  654. Wang A, Huen SC, Luan HH et al (2016) Opposing effects of fasting metabolism on tissue tolerance in bacterial and viral inflammation. Cell 166:1512–1525.e12.  https://doi.org/10.1016/j.cell.2016.07.026PubMedPubMedCentralCrossRefGoogle Scholar
  655. Wang D (2012) Redox chemistry of molybdenum in natural waters and its involvement in biological evolution. Front Microbiol.  https://doi.org/10.3389/fmicb.2012.00427
  656. Wang G, Feng D (2017) Dynamic relationship between infantile hepatitis syndrome and cytomegalovirus infection. Exp Ther Med 13:3443–3447.  https://doi.org/10.3892/etm.2017.4375PubMedPubMedCentralCrossRefGoogle Scholar
  657. Wang J, Pantopoulos K (2011) Regulation of cellular iron metabolism. Biochem J 434:365–381.  https://doi.org/10.1042/BJ20101825PubMedPubMedCentralCrossRefGoogle Scholar
  658. Wang K, Hoshino Y, Dowdell K et al (2017) Glutamine supplementation suppresses herpes simplex virus reactivation. J Clin Invest.  https://doi.org/10.1172/JCI88990
  659. Wang L, Song Y (2017) Efficacy of zinc given as an adjunct to the treatment of severe pneumonia: a meta-analysis of randomized, double-blind and placebo-controlled trials. Clin Respir J.  https://doi.org/10.1111/crj.12646
  660. Wang TY, Liu M, Portincasa P, Wang DQ-H (2013) New insights into the molecular mechanism of intestinal fatty acid absorption. Eur J Clin Invest 10.  https://doi.org/10.1111/eci.12161
  661. Wang YZ, Christakos S (1995) Retinoic acid regulates the expression of the calcium binding protein, calbindin-D28K. Mol Endocrinol 9:1510–1521.  https://doi.org/10.1210/mend.9.11.8584029PubMedGoogle Scholar
  662. Wasserman RH (1981) Intestinal absorption of calcium and phosphorus. Fed Proc 40:68–72PubMedGoogle Scholar
  663. Wasserman RH, Fullmer CS (1989) On the molecular mechanism of intestinal calcium transport. Adv Exp Med Biol 249:45–65PubMedCrossRefGoogle Scholar
  664. Watanabe F (2007) Vitamin B12 sources and bioavailability. Exp Biol Med (Maywood) 232:1266–1274.  https://doi.org/10.3181/0703-MR-67CrossRefGoogle Scholar
  665. Waters WR, Nonnecke BJ, Rahner TE et al (2001) Modulation of mycobacterium bovis-specific responses of bovine peripheral blood mononuclear cells by 1,25-dihydroxyvitamin D3. Clin Vaccine Immunol 8:1204–1212.  https://doi.org/10.1128/CDLI.8.6.1204-1212.2001CrossRefGoogle Scholar
  666. Watford M (2003) The urea cycle: teaching intermediary metabolism in a physiological setting. Biochem Mol Biol Educ 31:289–297.  https://doi.org/10.1002/bmb.2003.494031050249CrossRefGoogle Scholar
  667. Webb AR, DeCosta BR, Holick MF (1989) Sunlight regulates the cutaneous production of vitamin D3 by causing its photodegradation. J Clin Endocrinol Metab 68:882–887.  https://doi.org/10.1210/jcem-68-5-882PubMedCrossRefGoogle Scholar
  668. Webb KE (1990) Intestinal absorption of protein hydrolysis products: a review. J Anim Sci 68:3011–3022PubMedCrossRefGoogle Scholar
  669. Wehner AP, Craig DK (1972) Toxicology of inhaled NiO and CoO in Syrian golden hamsters. Am Ind Hyg Assoc J 33:146–155.  https://doi.org/10.1080/0002889728506624PubMedCrossRefGoogle Scholar
  670. Weigel MM, Armijos RX, Racines RJ et al (1994) Cutaneous leishmaniasis in subtropical ecuador: popular perceptions, knowledge, and treatment. Bull Pan Am Health Organ 28:142–155PubMedGoogle Scholar
  671. Weinstein SP, O’Boyle E, Fisher M, Haber RS (1994) Regulation of GLUT2 glucose transporter expression in liver by thyroid hormone: evidence for hormonal regulation of the hepatic glucose transport system. Endocrinology 135:649–654.  https://doi.org/10.1210/endo.135.2.8033812PubMedCrossRefGoogle Scholar
  672. Weiss G, Carver PL (2017) Role of divalent metals in infectious disease susceptibility and outcome. Clin Microbiol Infect.  https://doi.org/10.1016/j.cmi.2017.01.018
  673. Werneck GL, Hasselmann MH, Gouvêa TG (2011) An overview of studies on nutrition and neglected diseases in Brazil. Cien Saude Colet 16:39–62PubMedCrossRefGoogle Scholar
  674. Wessling-Resnick M (2014) Iron. In: Ross A, Caballero B, Cousins RJ et al (eds) Modern nutrition in health and disease, 11th edn. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia, PA, pp 176–188Google Scholar
  675. Wester PO (1987) Magnesium. Am J Clin Nutr 45:1305–1312PubMedCrossRefGoogle Scholar
  676. Whang R, Whang DD (1990) Update: mechanisms by which magnesium modulates intracellular potassium. J Am Coll Nutr 9:84–85.  https://doi.org/10.1080/07315724.1990.10720354PubMedCrossRefGoogle Scholar
  677. Wheeler GL, Jones MA, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393:365–369.  https://doi.org/10.1038/30728PubMedCrossRefGoogle Scholar
  678. White JH (2012) Vitamin D metabolism and signaling in the immune system. Rev Endocr Metab Disord 13:21–29.  https://doi.org/10.1007/s11154-011-9195-zPubMedCrossRefGoogle Scholar
  679. WHO (2017) Nutrition. In: World Heal. Organ. Heal. Top. http://www.who.int/topics/nutrition/en/. Accessed 7 Apr 2017
  680. Wientroub S, Winter CC, Wahl SM, Wahl LM (1989) Effect of vitamin D deficiency on macrophage and lymphocyte function in the rat. Calcif Tissue Int 44:125–130PubMedCrossRefGoogle Scholar
  681. Wiernsperger N, Rapin J (2010) Trace elements in glucometabolic disorders: an update. Diabetol Metab Syndr 2:70.  https://doi.org/10.1186/1758-5996-2-70PubMedPubMedCentralCrossRefGoogle Scholar
  682. Wilson JX (2005) Regulation of vitamin C transport. Annu Rev Nutr 25:105–125.  https://doi.org/10.1146/annurev.nutr.25.050304.092647PubMedCrossRefGoogle Scholar
  683. Wintergerst ES, Maggini S, Hornig DH (2006) Immune-enhancing role of vitamin C and zinc and effect on clinical conditions. Ann Nutr Metab 50:85–94.  https://doi.org/10.1159/000090495PubMedCrossRefGoogle Scholar
  684. Wolf G (2004) The discovery of vitamin D: the contribution of adolf windaus. J Nutr 134:1299–1302PubMedCrossRefGoogle Scholar
  685. Wolowczuk I, Verwaerde C, Viltart O et al (2008) Feeding our immune system: impact on metabolism. Clin Dev Immunol 2008:639803.  https://doi.org/10.1155/2008/639803PubMedPubMedCentralCrossRefGoogle Scholar
  686. Wooley JA, Btaiche IF, Good KL (2005) Metabolic and nutritional aspects of acute renal failure in critically ill patients requiring continuous renal replacement therapy. Nutr Clin Pract 20:176–191.  https://doi.org/10.1177/0115426505020002176PubMedCrossRefGoogle Scholar
  687. Wright EM, Loo DDF, Hirayama BA (2011) Biology of human sodium glucose transporters. Physiol Rev 91:733–794.  https://doi.org/10.1152/physrev.00055.2009PubMedCrossRefGoogle Scholar
  688. Wu W-H, Pang H-JE, Matthews KR (2012) Immune status and the development of Listeria monocytogenes infection in aged and young guinea pigs. Clin Invest Med 35:E309PubMedCrossRefGoogle Scholar
  689. Xia L, Björnstedt M, Nordman T et al (2001) Reduction of ubiquinone by lipoamide dehydrogenase. Eur J Biochem 268:1486–1490.  https://doi.org/10.1046/j.1432-1327.2001.02013.xPubMedCrossRefGoogle Scholar
  690. Xue Y, Fleet JC (2009) Intestinal vitamin D receptor is required for normal calcium and bone metabolism in mice. Gastroenterology 136(1317–27):e1–e2.  https://doi.org/10.1053/j.gastro.2008.12.051Google Scholar
  691. Yang Y, McClements DJ (2013) Vitamin E and vitamin E acetate solubilization in mixed micelles: physicochemical basis of bioaccessibility. J Colloid Interface Sci 405:312–321.  https://doi.org/10.1016/j.jcis.2013.05.018PubMedCrossRefGoogle Scholar
  692. Ye J, Shi X (2001) Gene expression profile in response to chromium-induced cell stress in A549 cells. Mol Cell Biochem 222:189–197PubMedCrossRefGoogle Scholar
  693. Zaahl MG, Robson KJ, Warnich L, Kotze MJ (2004) Expression of the SLC11A1 (NRAMP1) 5′-(GT)n repeat: Opposite effect in the presence of −237C→T. Blood Cells, Mol Dis 33:45–50.  https://doi.org/10.1016/j.bcmd.2004.04.003CrossRefGoogle Scholar
  694. Zacarias DA, Rolão N, de Pinho FA et al (2017) Causes and consequences of higher Leishmania infantum burden in patients with kala-azar: a study of 625 patients. Trop Med Int Health 22:679–687.  https://doi.org/10.1111/tmi.12877PubMedCrossRefGoogle Scholar
  695. Zamamiri-Davis F, Lu Y, Thompson JT et al (2002) Nuclear factor-kappaB mediates over-expression of cyclooxygenase-2 during activation of RAW 264.7 macrophages in selenium deficiency. Free Radic Biol Med 32:890–897PubMedCrossRefGoogle Scholar
  696. Zapatera B, Prados A, Gómez-Martínez S, Marcos A (2015) Immunonutrition: methodology and applications. Nutr Hosp 31(Suppl 3):145–154.  https://doi.org/10.3305/nh.2015.31.sup3.8762PubMedGoogle Scholar
  697. Zempleni J (2007) Handbook of vitamins, 4th edn. Taylor & Francis, Boca Raton, FLGoogle Scholar
  698. Zhang P, Tsuchiya K, Kinoshita T et al (2016) Vitamin B6 prevents IL-1β protein production by inhibiting NLRP3 inflammasome activation. J Biol Chem 291:24517–24527.  https://doi.org/10.1074/jbc.M116.743815PubMedPubMedCentralCrossRefGoogle Scholar
  699. Zhao Y, Joshi-Barve S, Barve S, Chen LH (2004) Eicosapentaenoic acid prevents LPS-induced TNF-alpha expression by preventing NF-kappaB activation. J Am Coll Nutr 23:71–78PubMedCrossRefGoogle Scholar
  700. Zhong M, Kawaguchi R, Kassai M, Sun H (2012) Retina, retinol, retinal and the natural history of vitamin A as a light sensor. Nutrients 4:2069–2096.  https://doi.org/10.3390/nu4122069PubMedPubMedCentralCrossRefGoogle Scholar
  701. Zhou R, Horai R, Silver PB et al (2012) The living eye “disarms” uncommitted autoreactive T cells by converting them to Foxp3(+) regulatory cells following local antigen recognition. J Immunol 188:1742–1750.  https://doi.org/10.4049/jimmunol.1102415PubMedPubMedCentralCrossRefGoogle Scholar
  702. Zhou X, Liu W, Gu M et al (2015) Helicobacter pylori infection causes hepatic insulin resistance by the c-Jun/miR-203/SOCS3 signaling pathway. J Gastroenterol 50:1027–1040.  https://doi.org/10.1007/s00535-015-1051-6PubMedCrossRefGoogle Scholar
  703. Ziboh VA (1998) The role of n-3 fatty acids in psoriasis. In: Kremer JM (ed) Medicinal fatty acids in inflammation. Birkhauser Verlag, Basel, pp 53–45Google Scholar
  704. Zimmermann MB (2009) Iodine deficiency. Endocr Rev 30:376–408.  https://doi.org/10.1210/er.2009-0011PubMedCrossRefGoogle Scholar
  705. Zimmermann MB, Köhrle J (2002) The impact of iron and selenium deficiencies on iodine and thyroid metabolism: biochemistry and relevance to public health. Thyroid Off J Am Thyroid Assoc 12:867–878.  https://doi.org/10.1089/105072502761016494CrossRefGoogle Scholar
  706. Zurier RB, Rossetti RG, Jacobson EW et al (1996) gamma-Linolenic acid treatment of rheumatoid arthritis. A randomized, placebo-controlled trial. Arthritis Rheum 39:1808–1817PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Stella Maria Barrouin-Melo
    • 1
  • Yadira Alejandra Morejón Terán
    • 2
  • Johanna Anturaniemi
    • 3
  • Anna Katrina Hielm-Björkman
    • 3
  1. 1.Department of Anatomy, Pathology and Clinics, School of Veterinary Medicine and ZootechnyFederal University of BahiaSalvadorBrazil
  2. 2.Institute of Collective HealthFederal University of BahiaSalvadorBrazil
  3. 3.Department of Equine and Small Animal Medicine, Faculty of Veterinary MedicineUniversity of HelsinkiHelsinkiFinland

Personalised recommendations