Metabolic Regulation of Innate Immunity to Fungal Infection

  • Cláudia S. Rodrigues
  • Cláudia F. Campos
  • Cristina Cunha
  • Agostinho Carvalho
Chapter
Part of the Experientia Supplementum book series (EXS, volume 109)

Abstract

In recent years, the renewed interest in immune cell metabolism has driven the emergence of a research field aimed at studying the role of metabolic processes during innate and adaptive immune responses. Although the specific requirements of myeloid cells after the canonical lipopolysaccharide/TLR4 stimulation have been extensively addressed, recent evidence suggests that this model may not represent a universally accurate metabolic blueprint. Instead, different microbial stimuli, pathogens, or tissue microenvironments trigger specific and complex metabolic rewiring of myeloid cells. This chapter aims to provide an overview of the metabolic heterogeneity in activated myeloid cells during fungal disease. Directions for future research in dissecting the uniqueness of metabolic signatures during fungal infection are suggested to ultimately provide new tailored diagnostic and therapeutic interventions.

Keywords

Fungal disease Immunometabolism β-glucan Trained immunity Epigenetics 

Notes

Acknowledgments

This work was supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) (NORTE-01-0145-FEDER-000013), and the Fundação para a Ciência e Tecnologia (FCT) (IF/00735/2014 to AC and SFRH/BPD/96176/2013 to CC).

References

  1. Adrie C, Bachelet M, Vayssier-Taussat M, Russo-Marie F, Bouchaert I, Adib-Conquy M, Cavaillon JM, Pinsky MR, Dhainaut JF, Polla BS (2001) Mitochondrial membrane potential and apoptosis peripheral blood monocytes in severe human sepsis. Am J Respir Crit Care Med 164(3):389–395.  https://doi.org/10.1164/ajrccm.164.3.2009088CrossRefPubMedGoogle Scholar
  2. Araujo EF, Loures FV, Bazan SB, Feriotti C, Pina A, Schanoski AS, Costa TA, Calich VL (2014) Indoleamine 2,3-dioxygenase controls fungal loads and immunity in paracoccidioidomicosis but is more important to susceptible than resistant hosts. PLoS Negl Trop Dis 8(11):e3330.  https://doi.org/10.1371/journal.pntd.0003330CrossRefPubMedPubMedCentralGoogle Scholar
  3. Armstrong-James D, Brown GD, Netea MG, Zelante T, Gresnigt MS, van de Veerdonk FL, Levitz SM (2017) Immunotherapeutic approaches to treatment of fungal diseases. Lancet Infect Dis 17(12):e393–e402.  https://doi.org/10.1016/S1473-3099(17)30442-5CrossRefPubMedGoogle Scholar
  4. Arts RJ, Novakovic B, Ter Horst R, Carvalho A, Bekkering S, Lachmandas E, Rodrigues F, Silvestre R, Cheng SC, Wang SY, Habibi E, Goncalves LG, Mesquita I, Cunha C, van Laarhoven A, van de Veerdonk FL, Williams DL, van der Meer JW, Logie C, O’Neill LA, Dinarello CA, Riksen NP, van Crevel R, Clish C, Notebaart RA, Joosten LA, Stunnenberg HG, Xavier RJ, Netea MG (2016) Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metab 24(6):807–819.  https://doi.org/10.1016/j.cmet.2016.10.008CrossRefPubMedPubMedCentralGoogle Scholar
  5. Arts RJ, Gresnigt MS, Joosten LA, Netea MG (2017) Cellular metabolism of myeloid cells in sepsis. J Leukoc Biol 101(1):151–164.  https://doi.org/10.1189/jlb.4MR0216-066RCrossRefPubMedGoogle Scholar
  6. Artyomov MN, Sergushichev A, Schilling JD (2016) Integrating immunometabolism and macrophage diversity. Semin Immunol 28(5):417–424.  https://doi.org/10.1016/j.smim.2016.10.004CrossRefPubMedPubMedCentralGoogle Scholar
  7. Belikova I, Lukaszewicz AC, Faivre V, Damoisel C, Singer M, Payen D (2007) Oxygen consumption of human peripheral blood mononuclear cells in severe human sepsis. Crit Care Med 35(12):2702–2708PubMedGoogle Scholar
  8. Bonifazi P, D’Angelo C, Zagarella S, Zelante T, Bozza S, De Luca A, Giovannini G, Moretti S, Iannitti RG, Fallarino F, Carvalho A, Cunha C, Bistoni F, Romani L (2010) Intranasally delivered siRNA targeting PI3K/Akt/mTOR inflammatory pathways protects from aspergillosis. Mucosal Immunol 3(2):193–205.  https://doi.org/10.1038/mi.2009.130CrossRefPubMedGoogle Scholar
  9. Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, Davies NA, Cooper CE, Singer M (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360(9328):219–223.  https://doi.org/10.1016/S0140-6736(02)09459-XCrossRefPubMedGoogle Scholar
  10. Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC (2012) Hidden killers: human fungal infections. Sci Transl Med 4(165):165rv113.  https://doi.org/10.1126/scitranslmed.3004404CrossRefGoogle Scholar
  11. Buck MD, Sowell RT, Kaech SM, Pearce EL (2017) Metabolic instruction of immunity. Cell 169(4):570–586.  https://doi.org/10.1016/j.cell.2017.04.004CrossRefPubMedGoogle Scholar
  12. Carey BW, Finley LW, Cross JR, Allis CD, Thompson CB (2015) Intracellular alpha-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518(7539):413–416.  https://doi.org/10.1038/nature13981CrossRefPubMedGoogle Scholar
  13. Chen G, Li J, Qiang X, Czura CJ, Ochani M, Ochani K, Ulloa L, Yang H, Tracey KJ, Wang P, Sama AE, Wang H (2005) Suppression of HMGB1 release by stearoyl lysophosphatidylcholine:an additional mechanism for its therapeutic effects in experimental sepsis. J Lipid Res 46(4):623–627.  https://doi.org/10.1194/jlr.C400018-JLR200CrossRefPubMedGoogle Scholar
  14. Cheng SC, Quintin J, Cramer RA, Shepardson KM, Saeed S, Kumar V, Giamarellos-Bourboulis EJ, Martens JH, Rao NA, Aghajanirefah A, Manjeri GR, Li Y, Ifrim DC, Arts RJ, van der Veer BM, Deen PM, Logie C, O’Neill LA, Willems P, van de Veerdonk FL, van der Meer JW, Ng A, Joosten LA, Wijmenga C, Stunnenberg HG, Xavier RJ, Netea MG (2014) mTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345(6204):1250684.  https://doi.org/10.1126/science.1250684CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cheng SC, Scicluna BP, Arts RJ, Gresnigt MS, Lachmandas E, Giamarellos-Bourboulis EJ, Kox M, Manjeri GR, Wagenaars JA, Cremer OL, Leentjens J, van der Meer AJ, van de Veerdonk FL, Bonten MJ, Schultz MJ, Willems PH, Pickkers P, Joosten LA, van der Poll T, Netea MG (2016) Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis. Nat Immunol 17(4):406–413.  https://doi.org/10.1038/ni.3398CrossRefPubMedGoogle Scholar
  16. Cluntun AA, Huang H, Dai L, Liu X, Zhao Y, Locasale JW (2015) The rate of glycolysis quantitatively mediates specific histone acetylation sites. Cancer Metab 3:10.  https://doi.org/10.1186/s40170-015-0135-3CrossRefPubMedPubMedCentralGoogle Scholar
  17. Corcoran SE, O’Neill LA (2016) HIF1alpha and metabolic reprogramming in inflammation. J Clin Investig 126(10):3699–3707.  https://doi.org/10.1172/JCI84431CrossRefPubMedPubMedCentralGoogle Scholar
  18. de Luca A, Bozza S, Zelante T, Zagarella S, D’Angelo C, Perruccio K, Vacca C, Carvalho A, Cunha C, Aversa F, Romani L (2010) Non-hematopoietic cells contribute to protective tolerance to Aspergillus fumigatus via a TRIF pathway converging on IDO. Cell Mol Immunol 7(6):459–470.  https://doi.org/10.1038/cmi.2010.43CrossRefPubMedPubMedCentralGoogle Scholar
  19. De Luca A, Carvalho A, Cunha C, Iannitti RG, Pitzurra L, Giovannini G, Mencacci A, Bartolommei L, Moretti S, Massi-Benedetti C, Fuchs D, De Bernardis F, Puccetti P, Romani L (2013) IL-22 and IDO1 affect immunity and tolerance to murine and human vaginal candidiasis. PLoS Pathog 9(7):e1003486.  https://doi.org/10.1371/journal.ppat.1003486CrossRefPubMedPubMedCentralGoogle Scholar
  20. Dominguez-Andres J, Arts RJW, Ter Horst R, Gresnigt MS, Smeekens SP, Ratter JM, Lachmandas E, Boutens L, van de Veerdonk FL, Joosten LAB, Notebaart RA, Ardavin C, Netea MG (2017) Rewiring monocyte glucose metabolism via C-type lectin signaling protects against disseminated candidiasis. PLoS Pathog 13(9):e1006632.  https://doi.org/10.1371/journal.ppat.1006632CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484(7393):186–194.  https://doi.org/10.1038/nature10947CrossRefPubMedGoogle Scholar
  22. Fliesser M, Morton CO, Bonin M, Ebel F, Hunniger K, Kurzai O, Einsele H, Loffler J (2015) Hypoxia-inducible factor 1alpha modulates metabolic activity and cytokine release in anti-Aspergillus fumigatus immune responses initiated by human dendritic cells. Int J Med Microbiol 305(8):865–873.  https://doi.org/10.1016/j.ijmm.2015.08.036CrossRefPubMedGoogle Scholar
  23. Gales A, Conduche A, Bernad J, Lefevre L, Olagnier D, Beraud M, Martin-Blondel G, Linas MD, Auwerx J, Coste A, Pipy B (2010) PPARgamma controls Dectin-1 expression required for host antifungal defense against Candida albicans. PLoS Pathog 6(1):e1000714.  https://doi.org/10.1371/journal.ppat.1000714CrossRefPubMedPubMedCentralGoogle Scholar
  24. Galvan-Pena S, O’Neill LA (2014) Metabolic reprograming in macrophage polarization. Front Immunol 5:420.  https://doi.org/10.3389/fimmu.2014.00420PubMedPubMedCentralGoogle Scholar
  25. Gleeson LE, Sheedy FJ (2016) Metabolic reprogramming & inflammation: fuelling the host response to pathogens. Semin Immunol 28(5):450–468.  https://doi.org/10.1016/j.smim.2016.10.007CrossRefPubMedGoogle Scholar
  26. Grahl N, Puttikamonkul S, Macdonald JM, Gamcsik MP, Ngo LY, Hohl TM, Cramer RA (2011) In vivo hypoxia and a fungal alcohol dehydrogenase influence the pathogenesis of invasive pulmonary aspergillosis. PLoS Pathog 7(7):e1002145.  https://doi.org/10.1371/journal.ppat.1002145CrossRefPubMedPubMedCentralGoogle Scholar
  27. Haschemi A, Kosma P, Gille L, Evans CR, Burant CF, Starkl P, Knapp B, Haas R, Schmid JA, Jandl C, Amir S, Lubec G, Park J, Esterbauer H, Bilban M, Brizuela L, Pospisilik JA, Otterbein LE, Wagner O (2012) The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab 15(6):813–826.  https://doi.org/10.1016/j.cmet.2012.04.023CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hellwig D, Voigt J, Bouzani M, Loffler J, Albrecht-Eckardt D, Weber M, Brunke S, Martin R, Kurzai O, Hunniger K (2016) Candida albicans induces metabolic reprogramming in human NK cells and responds to perforin with a zinc depletion response. Front Microbiol 7:750.  https://doi.org/10.3389/fmicb.2016.00750CrossRefPubMedPubMedCentralGoogle Scholar
  29. Houten SM, Wanders RJ (2010) A general introduction to the biochemistry of mitochondrial fatty acid beta-oxidation. J Inherit Metab Dis 33(5):469–477.  https://doi.org/10.1007/s10545-010-9061-2CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jha AK, Huang SC, Sergushichev A, Lampropoulou V, Ivanova Y, Loginicheva E, Chmielewski K, Stewart KM, Ashall J, Everts B, Pearce EJ, Driggers EM, Artyomov MN (2015) Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42(3):419–430.  https://doi.org/10.1016/j.immuni.2015.02.005CrossRefPubMedGoogle Scholar
  31. Johnson CH, Ivanisevic J, Siuzdak G (2016) Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol 17(7):451–459.  https://doi.org/10.1038/nrm.2016.25CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kapp K, Prufer S, Michel CS, Habermeier A, Luckner-Minden C, Giese T, Bomalaski J, Langhans CD, Kropf P, Muller I, Closs EI, Radsak MP, Munder M (2014) Granulocyte functions are independent of arginine availability. J Leukoc Biol 96(6):1047–1053.  https://doi.org/10.1189/jlb.3AB0214-082RCrossRefPubMedGoogle Scholar
  33. Kim YG, Udayanga KG, Totsuka N, Weinberg JB, Nunez G, Shibuya A (2014) Gut dysbiosis promotes M2 macrophage polarization and allergic airway inflammation via fungi-induced PGE(2). Cell Host Microbe 15(1):95–102.  https://doi.org/10.1016/j.chom.2013.12.010CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lampropoulou V, Sergushichev A, Bambouskova M, Nair S, Vincent EE, Loginicheva E, Cervantes-Barragan L, Ma X, Huang SC, Griss T, Weinheimer CJ, Khader S, Randolph GJ, Pearce EJ, Jones RG, Diwan A, Diamond MS, Artyomov MN (2016) Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab 24(1):158–166.  https://doi.org/10.1016/j.cmet.2016.06.004CrossRefPubMedPubMedCentralGoogle Scholar
  35. Langley RJ, Tsalik EL, van Velkinburgh JC, Glickman SW, Rice BJ, Wang C, Chen B, Carin L, Suarez A, Mohney RP, Freeman DH, Wang M, You J, Wulff J, Thompson JW, Moseley MA,Reisinger S, Edmonds BT, Grinnell B, Nelson DR, Dinwiddie DL, Miller NA, Saunders CJ, Soden SS, Rogers AJ, Gazourian L, Fredenburgh LE, Massaro AF, Baron RM, Choi AM, Corey GR, Ginsburg GS, Cairns CB, Otero RM, Fowler VG Jr, Rivers EP, Woods CW, Kingsmore SF (2013) An integrated clinico-metabolomic model improves prediction of death in sepsis. Sci Transl Med 5(195):195ra195.  https://doi.org/10.1126/scitranslmed.3005893CrossRefGoogle Scholar
  36. Liu H, Huang L, Bradley J, Liu K, Bardhan K, Ron D, Mellor AL, Munn DH, McGaha TL (2014) GCN2-dependent metabolic stress is essential for endotoxemic cytokine induction and pathology. Mol Cell Biol 34(3):428–438.  https://doi.org/10.1128/MCB.00946-13CrossRefPubMedPubMedCentralGoogle Scholar
  37. Markov AK, Turner MD, Oglethorpe N, Neely WA, Hellems HK (1981) Fructose-1,6-diphosphate: an agent for treatment of experimental endotoxin shock. Surgery 90(3):482–488PubMedGoogle Scholar
  38. Markov AK, Neely WA, Didlake RH, Terry J 3rd, Causey A, Lehan PH (2000) Metabolic responses to fructose-1,6-diphosphate in healthy subjects. Metabolism 49(6):698–703.  https://doi.org/10.1053/meta.2000.6249CrossRefPubMedGoogle Scholar
  39. Michelucci A, Cordes T, Ghelfi J, Pailot A, Reiling N, Goldmann O, Binz T, Wegner A, Tallam A, Rausell A, Buttini M, Linster CL, Medina E, Balling R, Hiller K (2013) Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc Natl Acad Sci USA 110(19):7820–7825.  https://doi.org/10.1073/pnas.1218599110CrossRefPubMedPubMedCentralGoogle Scholar
  40. Munn DH, Mellor AL (2013) Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol 34(3):137–143.  https://doi.org/10.1016/j.it.2012.10.001CrossRefPubMedGoogle Scholar
  41. Murch O, Collin M, Sepodes B, Foster SJ, Mota-Filipe H, Thiemermann C (2006) Lysophosphatidylcholine reduces the organ injury and dysfunction in rodent models of gram-negative and gram-positive shock. Br J Pharmacol 148(6):769–777.  https://doi.org/10.1038/sj.bjp.0706788CrossRefPubMedPubMedCentralGoogle Scholar
  42. O’Neill LA, Pearce EJ (2016) Immunometabolism governs dendritic cell and macrophage function. J Exp Med 213(1):15–23.  https://doi.org/10.1084/jem.20151570CrossRefPubMedPubMedCentralGoogle Scholar
  43. Olenchock BA, Rathmell JC, Vander Heiden MG (2017) Biochemical underpinnings of immune cell metabolic phenotypes. Immunity 46(5):703–713.  https://doi.org/10.1016/j.immuni.2017.04.013CrossRefPubMedGoogle Scholar
  44. Oliveira-Coelho A, Rodrigues F, Campos A Jr, Lacerda JF, Carvalho A, Cunha C (2015) Paving the way for predictive diagnostics and personalized treatment of invasive aspergillosis. Front Microbiol 6:411.  https://doi.org/10.3389/fmicb.2015.00411CrossRefPubMedPubMedCentralGoogle Scholar
  45. Palsson-McDermott EM, Curtis AM, Goel G, Lauterbach MA, Sheedy FJ, Gleeson LE, van den Bosch MW, Quinn SR, Domingo-Fernandez R, Johnston DG, Jiang JK, Israelsen WJ, Keane J, Thomas C, Clish C, Vander Heiden M, Xavier RJ, O’Neill LA (2015) Pyruvate kinase M2 regulates Hif-1alpha activity and IL-1beta induction and is a critical determinant of the warburg effect in LPS-activated macrophages. Cell Metab 21(1):65–80.  https://doi.org/10.1016/j.cmet.2014.12.005CrossRefPubMedPubMedCentralGoogle Scholar
  46. Pandey A, Ding SL, Qin QM, Gupta R, Gomez G, Lin F, Feng X, Fachini da Costa L, Chaki SP, Katepalli M, Case ED, van Schaik EJ, Sidiq T, Khalaf O, Arenas A, Kobayashi KS, Samuel JE, Rivera GM, Alaniz RC, Sze SH, Qian X, Brown WJ, Rice-Ficht A, Russell WK, Ficht TA, de Figueiredo P (2017) Global reprogramming of host kinase signaling in response to fungal infection. Cell Host Microbe 21(5):637–649.e636.  https://doi.org/10.1016/j.chom.2017.04.008CrossRefPubMedGoogle Scholar
  47. Park J, Chen Y, Tishkoff DX, Peng C, Tan M, Dai L, Xie Z, Zhang Y, Zwaans BM, Skinner ME, Lombard DB, Zhao Y (2013) SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell 50(6):919–930.  https://doi.org/10.1016/j.molcel.2013.06.001CrossRefPubMedPubMedCentralGoogle Scholar
  48. Paveglio SA, Allard J, Foster Hodgkins SR, Ather JL, Bevelander M, Campbell JM, Whittaker LeClair LA, McCarthy SM, van der Vliet A, Suratt BT, Boyson JE, Uematsu S, Akira S, Poynter ME (2011) Airway epithelial indoleamine 2,3-dioxygenase inhibits CD4+ T cells during Aspergillus fumigatus antigen exposure. Am J Respir Cell Mol Biol 44(1):11–23.  https://doi.org/10.1165/rcmb.2009-0167OCCrossRefPubMedGoogle Scholar
  49. Pearce EL, Pearce EJ (2013) Metabolic pathways in immune cell activation and quiescence. Immunity 38(4):633–643.  https://doi.org/10.1016/j.immuni.2013.04.005CrossRefPubMedPubMedCentralGoogle Scholar
  50. Peng M, Yin N, Chhangawala S, Xu K, Leslie CS, Li MO (2016) Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science 354(6311):481–484.  https://doi.org/10.1126/science.aaf6284CrossRefPubMedPubMedCentralGoogle Scholar
  51. Pfaller MA, Diekema DJ (2010) Epidemiology of invasive mycoses in North America. Crit Rev Microbiol 36(1):1–53.  https://doi.org/10.3109/10408410903241444CrossRefPubMedGoogle Scholar
  52. Qualls JE, Subramanian C, Rafi W, Smith AM, Balouzian L, DeFreitas AA, Shirey KA, Reutterer B, Kernbauer E, Stockinger S, Decker T, Miyairi I, Vogel SN, Salgame P, Rock CO, Murray PJ (2012) Sustained generation of nitric oxide and control of mycobacterial infection requires argininosuccinate synthase 1. Cell Host Microbe 12(3):313–323.  https://doi.org/10.1016/j.chom.2012.07.012CrossRefPubMedPubMedCentralGoogle Scholar
  53. Quintin J, Saeed S, Martens JH, Giamarellos-Bourboulis EJ, Ifrim DC, Logie C, Jacobs L, Jansen T, Kullberg BJ, Wijmenga C, Joosten LA, Xavier RJ, van der Meer JW, Stunnenberg HG, Netea MG (2012) Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe 12(2):223–232.  https://doi.org/10.1016/j.chom.2012.06.006CrossRefPubMedGoogle Scholar
  54. Rocco NM, Carmen JC, Klein BS (2011) Blastomyces dermatitidis yeast cells inhibit nitric oxide production by alveolar macrophage inducible nitric oxide synthase. Infect Immun 79(6):2385–2395.  https://doi.org/10.1128/IAI.01249-10CrossRefPubMedPubMedCentralGoogle Scholar
  55. Roger T, Lugrin J, Le Roy D, Goy G, Mombelli M, Koessler T, Ding XC, Chanson AL, Reymond MK, Miconnet I, Schrenzel J, Francois P, Calandra T (2011) Histone deacetylase inhibitors impair innate immune responses to Toll-like receptor agonists and to infection. Blood 117(4):1205–1217.  https://doi.org/10.1182/blood-2010-05-284711CrossRefPubMedGoogle Scholar
  56. Saeed S, Quintin J, Kerstens HH, Rao NA, Aghajanirefah A, Matarese F, Cheng SC, Ratter J, Berentsen K, van der Ent MA, Sharifi N, Janssen-Megens EM, Ter Huurne M, Mandoli A, van Schaik T, Ng A, Burden F, Downes K, Frontini M, Kumar V, Giamarellos-Bourboulis EJ, Ouwehand WH, van der Meer JW, Joosten LA, Wijmenga C, Martens JH, Xavier RJ, Logie C, Netea MG, Stunnenberg HG (2014) Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345(6204):1251086.  https://doi.org/10.1126/science.1251086CrossRefPubMedPubMedCentralGoogle Scholar
  57. Schefold JC, Zeden JP, Pschowski R, Hammoud B, Fotopoulou C, Hasper D, Fusch G, Von Haehling S, Volk HD, Meisel C, Schutt C, Reinke P (2010) Treatment with granulocyte-macrophage colony-stimulating factor is associated with reduced indoleamine 2,3-dioxygenase activity and kynurenine pathway catabolites in patients with severe sepsis and septic shock. Scand J Infect Dis 42(3):164–171.  https://doi.org/10.3109/00365540903405768CrossRefPubMedGoogle Scholar
  58. Singleton KD, Beckey VE, Wischmeyer PE (2005) Glutamine prevents activation of NF-kappaB and stress kinase pathways, attenuates inflammatory cytokine release, and prevents acute respiratory distress syndrome (ARDS) following sepsis. Shock 24(6):583–589CrossRefPubMedGoogle Scholar
  59. Sjovall F, Morota S, Persson J, Hansson MJ, Elmer E (2013) Patients with sepsis exhibit increased mitochondrial respiratory capacity in peripheral blood immune cells. Crit Care 17(4):R152.  https://doi.org/10.1186/cc12831CrossRefPubMedPubMedCentralGoogle Scholar
  60. Standage SW, Caldwell CC, Zingarelli B, Wong HR (2012) Reduced peroxisome proliferator-activated receptor alpha expression is associated with decreased survival and increased tissue bacterial load in sepsis. Shock 37(2):164–169.  https://doi.org/10.1097/SHK.0b013e31823f1a00CrossRefPubMedPubMedCentralGoogle Scholar
  61. Su L, Li H, Xie A, Liu D, Rao W, Lan L, Li X, Li F, Xiao K, Wang H, Yan P, Li X, Xie L (2015) Dynamic changes in amino acid concentration profiles in patients with sepsis. PloS One 10(4):e0121933.  https://doi.org/10.1371/journal.pone.0121933CrossRefPubMedPubMedCentralGoogle Scholar
  62. Tadie JM, Cynober L, Peigne V, Caumont-Prim A, Neveux N, Gey A, Guerot E, Diehl JL, Fagon JY, Tartour E, Delclaux C (2013) Arginine administration to critically ill patients with a low nitric oxide fraction in the airways: a pilot study. Intensive Care Med 39(9):1663–1665.  https://doi.org/10.1007/s00134-013-2984-yCrossRefPubMedGoogle Scholar
  63. Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G, Frezza C, Bernard NJ, Kelly B, Foley NH, Zheng L, Gardet A, Tong Z, Jany SS, Corr SC, Haneklaus M, Caffrey BE, Pierce K, Walmsley S, Beasley FC, Cummins E, Nizet V, Whyte M, Taylor CT, Lin H, Masters SL, Gottlieb E, Kelly VP, Clish C, Auron PE, Xavier RJ, O’Neill LA (2013) Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature 496(7444):238–242.  https://doi.org/10.1038/nature11986CrossRefPubMedPubMedCentralGoogle Scholar
  64. Ulloa L, Ochani M, Yang H, Tanovic M, Halperin D, Yang R, Czura CJ, Fink MP, Tracey KJ (2002) Ethyl pyruvate prevents lethality in mice with established lethal sepsis and systemic inflammation. Proc Natl Acad Sci USA 99(19):12351–12356.  https://doi.org/10.1073/pnas.192222999CrossRefPubMedPubMedCentralGoogle Scholar
  65. Vachharajani VT, Liu T, Brown CM, Wang X, Buechler NL, Wells JD, Yoza BK, McCall CE (2014) SIRT1 inhibition during the hypoinflammatory phenotype of sepsis enhances immunity and improves outcome. J Leukoc Biol 96(5):785–796.  https://doi.org/10.1189/jlb.3MA0114-034RRCrossRefPubMedPubMedCentralGoogle Scholar
  66. Wagener J, MacCallum DM, Brown GD, Gow NA (2017) Candida albicans chitin increases Arginase-1 activity in human macrophages, with an impact on macrophage antimicrobial functions. mBio 8(1).  https://doi.org/10.1128/mBio.01820-16
  67. Williams-Bey Y, Boularan C, Vural A, Huang NN, Hwang IY, Shan-Shi C, Kehrl JH (2014) Omega-3 free fatty acids suppress macrophage inflammasome activation by inhibiting NF-kappaB activation and enhancing autophagy. PloS One 9(6):e97957.  https://doi.org/10.1371/journal.pone.0097957CrossRefPubMedPubMedCentralGoogle Scholar
  68. Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, Ito S, Yang C, Wang P, Xiao MT, Liu LX, Jiang WQ, Liu J, Zhang JY, Wang B, Frye S, Zhang Y, Xu YH, Lei QY, Guan KL, Zhao SM, Xiong Y (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19(1):17–30.  https://doi.org/10.1016/j.ccr.2010.12.014CrossRefPubMedPubMedCentralGoogle Scholar
  69. Yan JJ, Jung JS, Lee JE, Lee J, Huh SO, Kim HS, Jung KC, Cho JY, Nam JS, Suh HW, Kim YH, Song DK (2004) Therapeutic effects of lysophosphatidylcholine in experimental sepsis. Nat Med 10(2):161–167.  https://doi.org/10.1038/nm989CrossRefPubMedGoogle Scholar
  70. Yan Y, Jiang W, Spinetti T, Tardivel A, Castillo R, Bourquin C, Guarda G, Tian Z, Tschopp J, Zhou R (2013) Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity 38(6):1154–1163.  https://doi.org/10.1016/j.immuni.2013.05.015CrossRefPubMedGoogle Scholar
  71. Yang L, Xie M, Yang M, Yu Y, Zhu S, Hou W, Kang R, Lotze MT, Billiar TR, Wang H, Cao L, Tang D (2014) PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis. Nat Commun 5:4436.  https://doi.org/10.1038/ncomms5436PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Cláudia S. Rodrigues
    • 1
    • 2
  • Cláudia F. Campos
    • 1
    • 2
  • Cristina Cunha
    • 1
    • 2
  • Agostinho Carvalho
    • 1
    • 2
  1. 1.Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
  2. 2.ICVS/3B’s - PT Government Associate LaboratoryBraga/GuimarãesPortugal

Personalised recommendations