Advertisement

Cellular Metabolism at a Glance

  • Inês Mesquita
  • Fernando Rodrigues
Chapter
Part of the Experientia Supplementum book series (EXS, volume 109)

Abstract

Metabolism is highly coordinated component of the cellular activity that involves sequential chemical transformations, within a so-called metabolic network. Through these coordinated actions, living organisms acquire energy and biosynthetic precursors to maintain cellular homeostasis and function. Metabolism relies on the breaking down of macromolecules to produce energy [catabolism] and/or intermediary metabolites that are then used to construct essential building blocks for macromolecule production [anabolism]. Overall, these metabolic processes are controlled by cellular energy status: when the energy released from catabolic processes exceeds the cellular demands the storage of metabolites in the form of lipids and glycogen takes place. These phenomena have been vastly associated with the genesis of metabolic disorders, such as obesity. In recent years, we have assisted to a rediscovery of metabolism through the identification of metabolic intermediaries that act as key players on differentiation, proliferation, and function of immune cells. This recent acknowledgement of the impact of metabolism in the overall immune response originated the ground-breaking field of immunometabolism. Here, we will provide a holistic view of metabolism highlighting the biochemical principles underlying its regulation.

Keywords

Metabolic networks Biosynthetic precursors Energy Homeostasis Metabolic nodes Regulation Immunometabolism 

References

  1. Akram M (2014) Citric acid cycle and role of its intermediates in metabolism. Cell Biochem Biophys 68:475–478CrossRefPubMedGoogle Scholar
  2. Altman BJ, Stine ZE, Dang CV (2016) From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer 16:619–634CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ananieva E (2015) Targeting amino acid metabolism in cancer growth and anti-tumor immune response. World J Biol Chem 6:281CrossRefPubMedPubMedCentralGoogle Scholar
  4. Arts RJW, Novakovic B, ter Horst R, Carvalho A, Bekkering S, Lachmandas E, Rodrigues F, Silvestre R, Cheng SC, Wang SY et al (2016) Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metab 24:807–819CrossRefPubMedPubMedCentralGoogle Scholar
  5. Averous J, Lambert-Langlais S, Mesclon F, Carraro V, Parry L, Jousse C, Bruhat A, Maurin A-C, Pierre P, Proud CG et al (2016) GCN2 contributes to mTORC1 inhibition by leucine deprivation through an ATF4 independent mechanism. Sci Rep 6:27698CrossRefPubMedPubMedCentralGoogle Scholar
  6. Balaban RS (1990) Regulation of oxidative phosphorylation in the mammalian cell. Am J Physiol 258:377–389CrossRefGoogle Scholar
  7. Berg JM, Tymoczko JL, Stryer L (2002a) The glycolytic pathway is tightly controlled. In: Berg JM, Tymoczko JL, Stryer L (eds) Biochemistry. W.H. Freeman, New YorkGoogle Scholar
  8. Berg JM, Tymoczko JL, Stryer L (2002b) Glycolysis is an energy-conversion pathway in many organisms. In: Berg JM, Tymoczko JL, Stryer L (eds) Biochemistry. W.H. Freeman, New York. section 16.1Google Scholar
  9. Berg JM, Tymoczko JL, Stryer L (2002c) The metabolism of glucose-6-phosphate by the pentose phosphate pathway is coordinated with glycolysis. In: Berg JM, Tymoczko JL, Stryer L (eds) Biochemistry. W.H. Freeman, New YorkGoogle Scholar
  10. Bonkovsky HL, Guo JT, Hou W, Li T, Narang T, Thapar M (2013) Porphyrin and heme metabolism and the porphyrias. Compr Physiol 3:365–401PubMedGoogle Scholar
  11. Boulton RB (1996) Yeast and biochemistry of ethanol fermentation. In: Boulton RB, Singleton VL, Bisson LF, Kunkee RE (eds) Principles and practices of winemaking. Springer, Boston, MA, pp 102–192CrossRefGoogle Scholar
  12. Bronte V, Zanovello P (2005) Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 5:641–654CrossRefPubMedGoogle Scholar
  13. Buchakjian MR, Kornbluth S (2010) The engine driving the ship: metabolic steering of cell proliferation and death. Nat Rev Mol Cell Biol 11:715–727CrossRefPubMedGoogle Scholar
  14. Cheng S-C, Quintin J, Cramer RA, Shepardson KM, Saeed S, Kumar V, Giamarellos-Bourboulis EJ, Martens JHA, Rao NA, Aghajanirefah A et al (2014) mTOR- and HIF-1-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345:1250684CrossRefPubMedPubMedCentralGoogle Scholar
  15. Citric THE, Cycle A (2010) The citric acid cycle. In: Eastmond, PJ Graham (eds) pp 601–630Google Scholar
  16. Dan Dunn J, Alvarez LAJ, Zhang X, Soldati T (2015) Reactive oxygen species and mitochondria: a nexus of cellular homeostasis. Redox Biol 6:472–485CrossRefPubMedPubMedCentralGoogle Scholar
  17. Déry MAC, Michaud MD, Richard DE (2005) Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators. Int J Biochem Cell Biol 37:535–540CrossRefPubMedGoogle Scholar
  18. Gallinetti J, Harputlugil E, Mitchell JR (2013) Amino acid sensing in dietary-restriction-mediated longevity: roles of signal-transducing kinases GCN2 and TOR. Biochem J 449:1–10CrossRefPubMedPubMedCentralGoogle Scholar
  19. Grohmann U, Bronte V (2010) Control of immune response by amino acid metabolism. Immunol Rev 236:243–264CrossRefPubMedGoogle Scholar
  20. Hansford R (2002) Oxidative phosphorylation. Encycl Life Sci:1–8Google Scholar
  21. Hardie DG, Pan DA (2002) Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase. Biochem Soc Trans 30:1064–1070CrossRefPubMedGoogle Scholar
  22. Houten SM, Wanders RJA (2010) A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation. J Inherted Metab Dis 33:469–477CrossRefGoogle Scholar
  23. Israelsen WJ, Vander Heiden MG (2015) Pyruvate kinase: function, regulation and role in cancer. Semin Cell Dev Biol 43:43–51CrossRefPubMedPubMedCentralGoogle Scholar
  24. Jiang B (2017) Aerobic glycolysis and high level of lactate in cancer metabolism and microenvironment. Genes Dis 4:25–27CrossRefGoogle Scholar
  25. Jones W, Bianchi K (2015) Aerobic glycolysis: beyond proliferation. Front Immunol 6:227CrossRefPubMedPubMedCentralGoogle Scholar
  26. Knobloch M, Pilz GA, Ghesquière B, Kovacs WJ, Wegleiter T, Moore DL, Hruzova M, Zamboni N, Carmeliet P, Jessberger S (2017) A fatty acid oxidation-dependent metabolic shift regulates adult neural stem cell activity. Cell Rep 20:2144–2155CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kornberg H (2000) Krebs and his trinity of cycles. Nat Rev Mol Cell Biol 1:225–228CrossRefPubMedGoogle Scholar
  28. Lane AN, Fan TWM (2015) Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res 43:2466–2485CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lee J, Ellis JM, Wolfgang MJ (2015) Adipose fatty acid oxidation is required for thermogenesis and potentiates oxidative stress-induced inflammation. Cell Rep 10:266–279CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lunt SY, Vander Heiden MG (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27:441–464CrossRefPubMedGoogle Scholar
  31. Mesquita I, Varela P, Belinha A, Gaifem J, Laforge M, Vergnes B, Estaquier J, Silvestre R (2016) Exploring NAD+ metabolism in host-pathogen interactions. Cell Mol Life Sci 73:1225–1236CrossRefPubMedGoogle Scholar
  32. Mueckler M, Thorens B (2013) The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med 34:121–138CrossRefPubMedPubMedCentralGoogle Scholar
  33. Nath S, Villadsen J (2015) Oxidative phosphorylation revisited. Biotechnol Bioeng 112:429–437CrossRefPubMedGoogle Scholar
  34. O’Neill HM, Holloway GP, Steinberg GR (2013) AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: implications for obesity. Mol Cell Endocrinol 366:135–151CrossRefPubMedGoogle Scholar
  35. O’Neill LAJ, Kishton RJ, Rathmell J (2016) A guide to immunometabolism for immunologists. Nat Rev Immunol 16:553–565CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922CrossRefPubMedGoogle Scholar
  37. Patra KC, Hay N (2014) The pentose phosphate pathway and cancer. Trends Biochem Sci 39:347–354CrossRefPubMedPubMedCentralGoogle Scholar
  38. Romero-Garcia S, Moreno-Altamirano MMB, Prado-Garcia H, Sánchez-García FJ (2016) Lactate contribution to the tumor microenvironment: mechanisms, effects on immune cells and therapeutic relevance. Front Immunol 7:52CrossRefPubMedPubMedCentralGoogle Scholar
  39. Senior AE, Nadanaciva S, Weber J (2002) The molecular mechanism of ATP synthesis by F1F0-ATP synthase. Biochim Biophys Acta – Bioenerg 1553:188–211CrossRefGoogle Scholar
  40. Thorens B, Mueckler M (2010) Glucose transporters in the 21st century. Am J Physiol Endocrinol Metab 298:E141–E145CrossRefPubMedGoogle Scholar
  41. Wolfson RL, Sabatini DM (2017) The Dawn of the age of amino acid sensors for the mTORC1 pathway. Cell Metab 26:301–309CrossRefPubMedGoogle Scholar
  42. Yang W, Lu Z (2013) Regulation and function of pyruvate kinase M2 in cancer. Cancer Lett 339:153–158CrossRefPubMedPubMedCentralGoogle Scholar
  43. Yao CH, Fowle-Grider R, Mahieu NG, Liu GY, Chen YJ, Wang R, Singh M, Potter GS, Gross RW, Schaefer J et al (2016) Exogenous fatty acids are the preferred source of membrane lipids in proliferating fibroblasts. Cell Chem Biol 23:483–493CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Life and Health Sciences Research Institute (ICVS), School of Medicine, University of MinhoBragaPortugal
  2. 2.ICVS/3B’s-PT Government Associate LaboratoryBraga/GuimarãesPortugal

Personalised recommendations