Hitting Probabilities for Systems of Stochastic PDEs: An Overview

  • Robert C. DalangEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 229)


We consider a d-dimensional random field that solves a possibly non-linear system of stochastic partial differential equations, such as stochastic heat or wave equations. We present results, obtained in joint works with Davar Khoshnevisan and Eulalia Nualart, and with Marta Sanz-Solé, on upper and lower bounds on the probabilities that the random field visits a deterministic subset of \(\mathbb {R}^d\), in terms, respectively, of Hausdorff measure and Newtonian capacity of the subset. These bounds determine the critical dimension above which points are polar, but do not, in general, determine whether points are polar in the critical dimension. For linear SPDEs, we discuss, based on joint work with Carl Mueller and Yimin Xiao, how the issue of polarity of points can be resolved in the critical dimension.


Hitting probabilities Systems of stochastics PDEs Malliavin calculus Stochastic heat equation Stochastic wave equation Spatially homogeneous Gaussian noise Capacity Hausdorff measure 

2010 Mathematics Subject Classification

Primary: 60H15 Secondary: 60J45 60G15 60H07 60G60. 


  1. 1.
    Balan, R.: Linear SPDEs driven by stationary random distributions. J. Fourier Anal. Appl. 18(6), 1113–1145 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Biermé, H., Lacaux, C., Xiao, Y.: Hitting probabilities and the Hausdorff dimension of the inverse images of anisotropic Gaussian random fields. Bull. Lond. Math. Soc. 41, 253–273 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Blumenthal, R.M., Getoor, R.K.: Markov Processes and Potential Theory. Pure and Applied Mathematics, vol. 29. Academic Press, New York (1968)Google Scholar
  4. 4.
    Chen, Z.L., Zhou, Q.: Hitting probabilities and the Hausdorff dimension of the inverse images of a class of anisotropic random fields. Acta Math. Sin. 31, 1895–1922 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Clarke de la Cerda, J., Tudor, C.A.: Hitting times for the stochastic wave equation with fractional colored noise. Rev. Mat. Iberoam. 30, 685–709 (2014)Google Scholar
  6. 6.
    Dalang, R.C., Khoshnevisan, D., Nualart, E.: Hitting probabilities for systems of non-linear stochastic heat equations with additive noise. Latin Am. J. Probab. Stat. (ALEA) 3, 231–271 (2007)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Dalang, R.C., Khoshnevisan, D., Nualart, E.: Hitting probabilities for systems for non-linear stochastic heat equations with multiplicative noise. Probab. Theory Related Fields 144, 371–427 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dalang, R.C., Khoshnevisan, D., Nualart, E.: Hitting probabilities for systems of non-linear stochastic heat equations in spatial dimension \(k\ge 1\). J. SPDE’s Anal. Comput. 1–1, 94–151 (2013)zbMATHGoogle Scholar
  9. 9.
    Dalang, R.C., Mueller, C.: Multiple points of the Brownian sheet in critical dimensions. Ann. Probab. 43(4), 1577–1593 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dalang, R.C., Mueller, C., Xiao, Y.: Polarity, of points for Gaussian random fields. Ann. Probab. 45(6B), 4700–4751 (2017)Google Scholar
  11. 11.
    Dalang, R.C., Nualart, E.: Potential theory for hyperbolic SPDEs. Ann. Probab. 32, 2099–2148 (2004)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dalang, R.C., Sanz-Solé, M.: Hitting probabilities for non-linear systems of stochastic waves. Mem. Am. Math. Soc. 237(1120), 1–75 (2015)zbMATHGoogle Scholar
  13. 13.
    Doob, J.L.: Classical potential theory and its probabilistic counterpart. Grundlehren der Mathematischen Wissenschaften, vol. 262. Springer, New York (1984)Google Scholar
  14. 14.
    Khoshnevisan, D.: Multiparameter Processes. An Introduction to Random Fields. Springer Monographs in Mathematics. Springer, New York (2002)zbMATHGoogle Scholar
  15. 15.
    Khoshnevisan, D.: Intersections of Brownian motions. Exp. Math. 21(3), 97–114 (2003)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Khoshnevisan, D., Shi, Z.: Brownian sheet and capacity. Ann. Probab. 27(3), 1135–1159 (1999)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kohatsu-Higa, A.: Lower bound estimates for densities of uniformly elliptic random variables on Wiener space. Probab. Theory Related Fields 126, 421–457 (2003)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lévy, P.: Processus Stochastiques et Mouvement Brownien. Gauthier-Villars, Paris (1948)zbMATHGoogle Scholar
  19. 19.
    Mueller, C., Tribe, R.: Hitting properties of a random string. Electron. J. Probab. 7(10) (2002)Google Scholar
  20. 20.
    Nualart, E.: On the density of systems of non-linear spatially homogeneous SPDEs. Stochastics 85(1), 48–70 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Nualart, E., Viens, F.: The fractional stochastic heat equation on the circle: time regularity and potential theory. Stoch. Process. Appl. 119(5), 1505–1540 (2009)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Port, S.C., Stone, C.J.: Brownian Motion and Classical Potential Theory. Academic Press, New York (1978)zbMATHGoogle Scholar
  23. 23.
    Sanz-Solé, M., Sarrà, M.: Hölder continuity for the stochastic heat equation with spatially correlated noise, Seminar on Stochastic Analysis, Random Fields ans Applications, III (Ascona, 1999). Progr. Prob. 52, 259–268 (2002)Google Scholar
  24. 24.
    Sanz-Solé, M., Viles, N.: Systems of stochastic Poisson equations: hitting probabilities. Stochastic Process. Appl. (2016). (to appear). arXiv:1612.04567
  25. 25.
    Talagrand, M.: Hausdorff measure of trajectories of multiparameter fractional Brownian motion. Ann. Probab. 23(2), 767–775 (1995)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Talagrand, M.: Multiple points of trajectories of multiparameter fractional Brownian motion. Probab. Theory Related Fields 112–4, 545–563 (1998)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Xiao, Y.: Sample path properties of anisotropic Gaussian random fields. In: Khoshnevisan, D., Rassoul-Agha, F. (eds.) A Minicourse on Stochastic Partial Differential Equations. Lecture Notes in Mathematics, vol. 1962, pp. 145–212. Springer, New York (2009)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut de Mathématiques, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations