Advertisement

Fokker–Planck Equations in Hilbert Spaces

  • Giuseppe Da PratoEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 229)

Abstract

This paper includes in an unified way several results about existence and uniqueness of solutions of Fokker–Planck equations from (Bogachev et al., J Funct Anal, 256:1269–1298, 2009) [2], (Bogachev et al., J Evol Equ, 10(3):487–509, 2010) [3], (Bogachev et al., Partial Differ Equ, 36:925–939, 2011) [4] and (Bogachev et al., Bull London Math Soc 39:631–640, 2007) [1], using probabilistic methods. Several applications are provided including Burgers and 2D-Navier–Stokes equations perturbed by noise. Some of these applications were also studied by a different analytic approach in (Bogachev et al., J Differ Equ, 259(8):3854–3873, 2015) [5], (Bogachev et al., Ann Sc Norm Super Pisa Cl Sci 14(3):983–1023, 2015) [6], (Da Prato et al., Commun Math Stat, 1(3):281–304, 2013) [11].

Keywords

Fokker–Planck equations Kolmogorov operators Parabolic equations for measures Stochastic PDEs 

2000 Mathematics Subject Classification AMS

60H15 60J35 60J60 47D07 

References

  1. 1.
    Bogachev, V., Da Prato, G., Röckner, M., Stannat, W.: Uniqueness of solutions to weak parabolic equations for measures. Bull. London Math. Soc. 39, 631–640 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bogachev, V., Da Prato, G., Röckner, M.: Fokker-Planck equations and maximal dissipativity for Kolmogorov operators with time dependent singular drifts in Hilbert spaces. J. Funct. Anal. 256, 1269–1298 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bogachev, V., Da Prato, G., Röckner, M.: Existence and uniqueness of solutions for Fokker-Planck equations on Hilbert spaces. J. Evol. Equ. 10(3), 487–509 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bogachev, V., Da Prato, G., Röckner, M.: Uniqueness for solutions of Fokker-Planck equations on infinite dimensional spaces. Commun. Partial Differ. Equ. 36, 925–939 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bogachev, V., Da Prato, G., Röckner, M., Shaposhnikov, S.: On the uniqueness of solutions to continuity equations. J. Differ. Equ. 259(8), 3854–3873 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bogachev, V., Da Prato, G., Röckner, M., Shaposhnikov, S.: An analytic approach to infinite-dimensional continuity and Fokker-Planck-Kolmogorov equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. 14(3), 983–1023 (2015)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Cerrai, S.: A Hille-Yosida theorem for weakly continuous semigroups. Semigroup Forum 49, 349–367 (1994)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Da Prato, G.: Kolmogorov Equations for Stochastic PDEs. Birkhäuser, Boston (2004)CrossRefGoogle Scholar
  9. 9.
    Da Prato, G., Tubaro, L.: Some results about dissipativity of Kolmogorov operators. Czechoslov. Math. J. 51(126), 685–699 (2001)Google Scholar
  10. 10.
    Da Prato, G., Debussche, A.: \(m\)-dissipativity of Kolmogorov operators corresponding to Burgers equations with space-time white noise. Potential Anal 26, 31–55 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Da Prato, G., Flandoli, F., Röckner, M.: Fokker-Planck equations for SPDE with non-trace class noise. Commun. Math. Stat. 1(3), 281–304 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Eberle, A.: Uniqueness and Non-uniqueness of Semigroups Generated by Singular Diffusion Operators. Lecture Notes in Mathematics, vol. 1718. Springer, Berlin (1999)zbMATHGoogle Scholar
  13. 13.
    Liu, W., Röckner, M.: Stochastic Partial Differential Equations: An Introduction. Universitext. Springer, Berlin (2015)CrossRefGoogle Scholar
  14. 14.
    Priola, E.: On a class of Markov type semigroups in spaces of uniformly continuous and bounded functions. Studia Math. 136, 271–295 (1999)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Scuola Normale SuperiorePisaItaly

Personalised recommendations