Dynamics of SPDEs Driven by a Small Fractional Brownian Motion with Hurst Parameter Larger than 1/2

  • L. H. Duc
  • M. J. Garrido-Atienza
  • B. SchmalfußEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 229)


We consider mild solutions of an SPDE driven by a time dependent perturbation which is Hölder continuous with a Hölder exponent larger than 1/2. In particular, such a perturbation is given by a fractional Brownian motion with Hurst parameter larger than 1/2. The coefficient in front of this noise is an operator with bounded first and second derivatives. We formulate conditions such that the equation has a unique pathwise solution. Further we investigate the globally exponential stability of the trivial solution.


Stability, stochastic partial differential equations Fractional Brownian motion 

Mathematical Subject Classification 2010

Primary: 35B35 Secondary: 34A34 34F05 


  1. 1.
    Amann, H.: Ordinary Differential Equations: An Introduction to Nonlinear Analysis. de Gruyter Studies in Mathematics, vol. 13. Walter de Gruyter and Co., Berlin (1990). Translated from the German by Gerhard MetzenCrossRefGoogle Scholar
  2. 2.
    Chen, Y., Gao, H., Garrido-Atienza, M.J., Schmalfuß, B.: Pathwise solutions of SPDEs driven by Hölder-continuous integrators with exponent larger than 1/2 and random dynamical systems. Discret. Contin. Dyn. Syst. 34(1), 79–98 (2014)CrossRefGoogle Scholar
  3. 3.
    Dragomir, S.S.: Some Gronwall Type Inequalities and Applications. Nova Science Publishers Inc, Hauppauge (2003)zbMATHGoogle Scholar
  4. 4.
    Duc, L.H., Garrido-Atienza, M.J., Neuenkirch, A., Schmalfuß, B.: Exponential stability of stochastic evolution equations driven by small fractional Brownian motion with Hurst parameter in \((1/2,1)\). J. Differ. Equ. 264(2), 1119–1145 (2018)Google Scholar
  5. 5.
    Fan, X., Yuan, C.: Lyapunov exponents of PDEs driven by fractional noise with Markovian switching. Stat. Probab. Lett. 110, 39–50 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Fiel, A., León, J.A., Márquez-Carreras, D.: Stability for a class of semilinear fractional stochastic integral equations. Adv. Differ. Equ. 2016(166), 20 (2016)MathSciNetGoogle Scholar
  7. 7.
    Garrido-Atienza, M.J., Schmalfuß, B.: Ergodicity of the infinite dimensional fractional Brownian motion. J. Dyn. Differ. Equ. 23(3), 671–681 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Garrido-Atienza, M.J., Neuenkirch, A., Schmalfuß, B.: Asymptotical stability of differential equations driven by Holder continuous paths. J. Dyn. Differ. Equ. (2017).
  9. 9.
    Gubinelli, M., Tindel, S.: Rough evolution equations. Ann. Probab. 38(1), 1–75 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hairer, M.: Ergodicity of stochastic differential equations driven by fractional Brownian motion. Ann. Probab. 33(2), 703–758 (2005)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hairer, M., Ohashi, A.: Ergodic theory for SDEs with extrinsic memory. Ann. Probab. 35(5), 1950–1977 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hairer, M., Pillai, N.S.: Ergodicity of hypoelliptic SDEs driven by fractional Brownian motion. Ann. Inst. Henri Poincaré Probab. Stat. 47(2), 601–628 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hairer, M., Pillai, N.S.: Regularity of laws and ergodicity of hypoelliptic SDEs driven by rough paths. Ann. Probab. 41(4), 2544–2598 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Khasminskii, R.: Stochastic Stability of Differential Equations. Stochastic Modelling and Applied Probability, vol. 66, 2nd edn. Springer, Heidelberg (2012). With contributions by Milstein, G.N., Nevelson, M.BCrossRefGoogle Scholar
  15. 15.
    Liu, K., Truman, A.: A note on almost sure exponential stability for stochastic partial functional differential equations. Stat. Probab. Lett. 50(3), 273–278 (2000)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Progress in Nonlinear Differential Equations and their Applications, vol. 16. Birkhäuser, Basel (1995)zbMATHGoogle Scholar
  17. 17.
    Mao, X.: Exponential Stability of Stochastic Differential Equations. Monographs and Textbooks in Pure and Applied Mathematics, vol. 182. Marcel Dekker Inc, New York (1994)zbMATHGoogle Scholar
  18. 18.
    Maslowski, B., Nualart, D.: Evolution equations driven by a fractional Brownian motion. J. Funct. Anal. 202(1), 277–305 (2003)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ruan, D., Luo, J.: Fixed points and exponential stability of stochastic functional partial differential equations driven by fractional Brownian motion. Publ. Math. Debrecen 86(3–4), 285–293 (2015)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Saussereau, B.: Transportation inequalities for stochastic differential equations driven by a fractional Brownian motion. Bernoulli 18(1), 1–23 (2012)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Tan, L.: Exponential stability of fractional stochastic differential equations with distributed delay. Adv. Differ. Equ. 2014(321), 8 (2014)MathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • L. H. Duc
    • 1
    • 4
  • M. J. Garrido-Atienza
    • 2
  • B. Schmalfuß
    • 3
    Email author
  1. 1.Max-Planck-Institut Für Mathematik in den NaturwissenschaftenLeipzigGermany
  2. 2.Institute of MathematicsVietnam Academy of Science and TechnologyHanoiVietnam
  3. 3.Dpto. Ecuaciones Diferenciales y Análisis Numérico, Universidad de SevillaSevillaSpain
  4. 4.Institut für Mathematik, Friedrich Schiller Universität JenaJenaGermany

Personalised recommendations