Improved Explosibility Diagram Method

  • Jianwei Cheng


In this chapter, some of the unique influential factors existing in a mine sealed volume which may greatly change the determination judgments are reviewed and presented. In order to achieve better and more accurate explosibility judgments, a modified Coward explosibility diagram method is proposed in this chapter. The important characteristic points or parameters to construct the explosibility triangle such as: upper flammable limit, lower flammable limit, nose limit, etc. are corrected or modified. The cross-verification study using the USBM explosibility diagram served as a double check and has also been referenced at the end of this chapter.


Mine gas explosibility modified Coward method explosive limits Explosibility diagram Explosibility triangle Cross-verification study 


  1. Arnaldos, J., Casal, J., & Planas-Cuchi, E. (2001). Prediction of flammability limits at reduced pressures. Chemical Engineering Science, 56(12), 3829–3843.CrossRefGoogle Scholar
  2. Bjerketvedt, D., Bakke, J. R., & Wingerden, K. V. (1997). Gas explosion handbook. Journal of Hazardous Materials, 52(1), 1–150.CrossRefGoogle Scholar
  3. Britton, L. G. (2002). Using heats of oxidation to evaluate flammability hazards. Process Safety Progress, 21(1), 31–54.CrossRefGoogle Scholar
  4. Burgess, M. J., & Wheeler, R. V. (1911). The lower limit of inflammation of mixtures of the paraffin hydrocarbons with air. Journal of the Chemical Society, Transactions, 99, 2013–2030.CrossRefGoogle Scholar
  5. Caron, M., Goethals, M., Smedt, G. D., Berghmans, J., & Vliegen, S. (1999). Pressure dependence of the auto-ignition temperature of methane/air mixtures. Journal of Hazardous Materials, 65(3), 233–244.CrossRefGoogle Scholar
  6. Chamberlain, E. A., & Hall, D. A. (1973). Practical early detection of spontaneous combustion. Colliery Guardian, 221, 190–194.Google Scholar
  7. Coward, H. F., & Jones, G. W. (1952). Limits of flammability of gases and vapors (p. 503). Washington, D.C: U.S. Bureau of Mines, Bulletin.Google Scholar
  8. Drysdale, D. (1985). An introduction to fire dynamics. Chichester: Wiley.Google Scholar
  9. Greuer. (1974). Study of mine fire fighting using inert gases. Research report, 4 Jun 1973–24 Dec 1974, Coal Gas.Google Scholar
  10. Kondo, S., Takizawa, K., Takahashi, A., & Tokuhashi, K. (2006a). Extended Le Chatelier’s formula and nitrogen dilution effect on the flammability limits. Fire Safety Journal, 41(5), 406–417.CrossRefGoogle Scholar
  11. Kondo, S., Takizawa, K., Takahashi, A., & Tokuhashi, K. (2006b). Extended Le Chatelier’s formula for carbon dioxide dilution effect on flammability limits. Journal of Hazardous Materials, 138(1), 1.CrossRefGoogle Scholar
  12. Kondo, S., Takizawa, K., Takahashi, A., Tokuhashi, K., & Sekiya, A. (2008). A study on flammability limits of fuel mixtures. Journal of Hazardous Materials, 155(3), 440.CrossRefGoogle Scholar
  13. McPherson, M. J. (1993). Subsurface Ventilation and Environmental Engineering (pp. (21)39–(21)43). London, United Kingdom: Chapman & Hall.Google Scholar
  14. Muzyczuk, J. (1974). Determination of the coward explosibility triangle for complex gas mixtures. Katowice: Glownego Instytuty Gornictwa.Google Scholar
  15. Rowley, J. R., Rowley, R. L., & Wilding, W. V. (2010). Experimental determination and re-examination of the effect of initial temperature on the lower flammability limit of pure liquids. Journal of Chemical & Engineering Data, 55(9), 3063–3067.CrossRefGoogle Scholar
  16. Vanderstraeten, B., Tuerlinckx, D., Berghmans, J., Vliegen, S., & Oost, E. V. (1997). Experimental study of the pressure and temperature dependence on the upper flammability limit of methane/air mixtures. Journal of Hazardous Materials, 56(3), 237–246.CrossRefGoogle Scholar
  17. Wang, D. (2004). Mine ventilation and safety. Xuzhou: China University of Mining and Technology Press.Google Scholar
  18. Xie, J., Xue, S., Cheng, W. & Wang, G. (2011). Early detection of spontaneous combustion of coal in underground coal mines with development of an ethylene enriching system. International Journal of Coal Geology, 85, 123–127.CrossRefGoogle Scholar
  19. Yuan, L., & Smith, A. C. (2011). CO and CO 2 emissions from spontaneous heating of coal under different ventilation rates. International Journal of Coal Geology, 88(1), 24–30.CrossRefGoogle Scholar
  20. Zabetakis, M. G., Lambiris, S., & Scott, G. S. (1959). The combustion of coal. In The 7th international symposiumon combustion. Pittsburgh.Google Scholar
  21. Zabetaksi M. G. (1965). Flammability Characteristics of Combustible Gases and Vapors. Bulletin: U.S. Bureau of Mines, 627.Google Scholar
  22. Zhou, X., & Wu, B. (1996). Theory of mine fire rescues and applications. Beijing, China: Coal Mining Industry Press.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jianwei Cheng
    • 1
  1. 1.College of Safety EngineeringChina University of Mining and TechnologyXuzhouChina

Personalised recommendations