Skip to main content

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 99))

  • 667 Accesses

Abstract

This chapter begins with an overview of the variety of methods and techniques used to choose discrete pole locations in the family of Generalized Multipole Techniques (GMT). The heuristic rules and guidelines that are described are often quite successful. In addition, studies of the performance of GMT methods for canonical problems are reviewed. It has been shown that there are at least two sources of error when using GMT: analytically-based error and numerically-based error. The effective spatial bandwidth (EBW) of fields along the boundary of scatterers is described and used to show the conditions necessary to obtain stable solutions from GMT techniques. The EBW for two-dimensional circular boundaries is applied to some examples. In addition, an extension of EBW for non-circular boundaries is described and applied to elliptically shaped boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Wriedt (ed.), Generalized Multipole Techniques for Electromagnetic and Light Scattering, Computational Methods in Mechanics, vol. 4 (Elsevier Science B. V, New York, 1999)

    Google Scholar 

  2. R.F. Harrington, Field Computation by Moment Methods (R. E. Krieger, Malabar, 1968)

    Google Scholar 

  3. A.F. Peterson, S.L. Ray, R. Mittra, Computational Methods for Electromagnetics (IEEE Press, New York, 1998)

    MATH  Google Scholar 

  4. C. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech House, Boston, 1990)

    Google Scholar 

  5. P. Leuchtmann, F. Bomholt, IEEE Trans. Electromagn. Compat. 35(2), 170 (1993)

    Article  Google Scholar 

  6. A.C. Ludwig, in IEEE AP-S International Symposium Digest, Dallas, TX (1990), pp. 48–51

    Google Scholar 

  7. Y. Leviatan, IEEE Trans. Antennas Propag. 38(8), 1259 (1990)

    Article  ADS  Google Scholar 

  8. Y. Leviatan, A. Boag, IEEE Trans. Antennas Propag. 35, 1119 (1987)

    Article  ADS  Google Scholar 

  9. Y. Leviatan, A. Boag, A. Boag, IEEE Trans. Antennas Propag. 36, 1026 (1988)

    Article  ADS  Google Scholar 

  10. Y. Leviatan, A. Boag, A. Boag, IEEE Trans. Antennas Propag. 36(12), 1722 (1988)

    Article  ADS  Google Scholar 

  11. I.N. Vekua, New Methods for Solving Elliptic Equations (Wiley, New York, 1967)

    MATH  Google Scholar 

  12. D.I. Kaklamani, H.T. Anastassiu, IEEE Antennas Propag. Mag. 44(3), 48 (2002)

    Article  ADS  Google Scholar 

  13. K. Beshir, J.E. Richie, IEEE Trans. Electromagn. Compat. 38(2), 177 (1996)

    Article  Google Scholar 

  14. S. Eisler, Y. Leviatan, IEE Proc. Pt. H 136(6), 431 (1989)

    Google Scholar 

  15. P. Leuchtmann, IEEE Trans. Mag. 19(6), 2371 (1983)

    Article  ADS  Google Scholar 

  16. E. Moreno, D. Erni, C. Hafner, R. Vahldieck, J. Opt. Soc Am. A 19(1), 101 (2002)

    Article  ADS  Google Scholar 

  17. A.K. Bandyopadhyay, C. Tomassoni, A.S. Omar, in IEEE MTT-S International Symposium Digest (2004), pp. 1381–1384

    Google Scholar 

  18. I.I. Heretakis, P.J. Papakanellos, C.N. Capsalis, J. Electromagn. Waves Appl. 16(11), 1555 (2002)

    Article  Google Scholar 

  19. I.I. Heretakis, P.J. Papakanellos, C.N. Capsalis, IEEE Trans. Antennas Propag. 53(3), 938 (2005)

    Article  ADS  Google Scholar 

  20. R.S. Zaridze, R. Jobava, G. Bit-Banik, D. Karkasbadze, J. Electromagn. Waves Appl. 12, 1491 (1998)

    Article  MathSciNet  Google Scholar 

  21. R.S. Zaridze, G. Bit-Babik, K. Tavzarashvili, D.P. Economou, K.K. Uzunoglu, IEEE Trans. Antennas Propag. 50(1), 50 (2002)

    Article  ADS  Google Scholar 

  22. G. Fikioris, IEEE Trans. Antennas Propag. 54(7), 2022 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  23. C.A. Valagiannopoulos, N.L. Tsitsas, G. Fikioris, J. Opt. Soc. Am. A 29(1), 1 (2012)

    Article  ADS  Google Scholar 

  24. H.T. Anastassiu, D.G. Lymperopoulos, D.I. Kaklamani, IEEE Trans. Antennas Propag. 52(6), 1541 (2004)

    Article  ADS  Google Scholar 

  25. K.F. Warnick, W.C. Chew, IEEE Trans. Microw. Theory Tech. 48, 1652 (2000)

    Article  ADS  Google Scholar 

  26. H.T. Anastassiu, D.I. Kaklamani, J. Electromagn. Waves Appl. 18(10), 1283 (2004)

    Article  Google Scholar 

  27. H.T. Anastassiu, D.I. Kaklamani, Radio Sci. 39(5), RS5015 (2004). https://doi.org/10.1029/2004RS003028

  28. H.T. Anastassiu, Prog. Electromagn. Res. PIER 52, 109 (2005)

    Article  Google Scholar 

  29. O.M. Bucci, G. Franceschetti, IEEE Trans. Antennas Propag. 35(12), 1445 (1987)

    Article  ADS  Google Scholar 

  30. J.E. Richie, IEEE Trans. Antennas Propag. 58(11), 3610 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  31. J.E. Richie, IEEE Trans. Antennas Propag. 59(12), 4861 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Richie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Richie, J.E. (2018). Pole Location in GMT. In: Wriedt, T., Eremin, Y. (eds) The Generalized Multipole Technique for Light Scattering. Springer Series on Atomic, Optical, and Plasma Physics, vol 99. Springer, Cham. https://doi.org/10.1007/978-3-319-74890-0_9

Download citation

Publish with us

Policies and ethics