Skip to main content

Hyperons and Resonances in Nuclear Matter

  • Chapter
  • First Online:
The Euroschool on Exotic Beams - Vol. 5

Part of the book series: Lecture Notes in Physics ((LNP,volume 948))

Abstract

Theoretical approaches to interactions of hyperons and resonances in nuclear matter and their production in elementary hadronic reactions and heavy ion collisions are discussed. The focus is on baryons in the lowest SU(3) flavor octet and states from the SU(3) flavor decuplet. Approaches using the SU(3) formalism for interactions of mesons and baryons and effective field theory for hyperons are discussed. An overview of application to free space and in-medium baryon-baryon interactions is given and the relation to a density functional theory is indicated. SU(3) symmetry breaking is discussed for the Lambda hyperon. The symmetry conserving Lambda-Sigma mixing is investigated. In asymmetric nuclear matter a mixing potential, driven by the rho- and delta-meson mean-fields, is obtained. The excitation of subnuclear degrees of freedom in peripheral heavy ion collisions at relativistic energies is reviewed. The status of in-medium resonance physics is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    More meaningful values are in fact the volume integrals per nucleon.

References

  1. G.D. Rochester, C.C. Butler, Nature 160, 855 (1947). https://doi.org/10.1038/160855a0

  2. M. Danysz, J. Pniewski, Phil. Mag. 44, 348 (1953)

    Google Scholar 

  3. M. Agnello et al., Nucl. Phys. A 881, 269 (2012). https://doi.org/10.1016/j.nuclphysa.2012.02.015

  4. T.R. Saito et al., Nucl. Phys. A 954, 199 (2016). https://doi.org/10.1016/j.nuclphysa.2016. 05.011

  5. C. Rappold et al., Phys. Lett. B 728, 543 (2014). https://doi.org/10.1016/j.physletb.2013. 12.037

  6. N. Shah, Y.G. Ma, J.H. Chen, S. Zhang, Phys. Lett. B 754, 6 (2016). https://doi.org/10.1016/j.physletb.2016.01.005

  7. N. Shah, Y.G. Ma, J.H. Chen, S. Zhang, Production of multistrange hadrons, light nuclei and hypertriton in central Au+ Au collisions at \(\sqrt {s_{NN}} = 11.5\) and 200 GeV. Phys. Lett. B754, 6–10 (2016). https://doi.org/10.1016/j.physletb.2016.01.005

  8. T.P. Cheng, L.F. Li, Gauge Theory of Elementary Particle Physics (Clarendon (Oxford Science Publications), Oxford, 1984), 536 pp.

    Google Scholar 

  9. J.I. Friedman, H.W. Kendall, Ann. Rev. Nucl. Part. Sci. 22, 203 (1972). https://doi.org/10.1146/annurev.ns.22.120172.001223

  10. A. Gal, E.V. Hungerford, D.J. Millener, Rev. Mod. Phys. 88(3), 035004 (2016). https://doi.org/10.1103/RevModPhys.88.035004

  11. I. Bednarek, P. Haensel, J.L. Zdunik, M. Bejger, R. Manka, Astron. Astrophys. 543, A157 (2012). https://doi.org/10.1051/0004-6361/201118560

  12. J. Benlliure et al., JPS Conf. Proc. 6, 020039 (2015). https://doi.org/10.7566/JPSCP.6.020039

  13. O. Hashimoto, H. Tamura, Prog. Part. Nucl. Phys. 57, 564 (2006). https://doi.org/10.1016/j.ppnp.2005.07.001

  14. A. Gal, O. Hashimoto, J. Pochodzalla, Nucl. Phys. A 881, 1 (2012)

    Google Scholar 

  15. A. Feliciello, T. Nagae, Rep. Prog. Phys. 78(9), 096301 (2015). https://doi.org/10.1088/0034-4885/78/9/096301

  16. A. Gal, J. Pochodzalla (eds.), Nucl. Phys. A 954 (2016)

    Google Scholar 

  17. D. Blaschke et al. (eds.), Eur. Phys. J. A 52 (2016)

    Google Scholar 

  18. H. Lenske, M. Dhar, T. Gaitanos, X. Cao, Baryons and baryon resonances in nuclear matter. Prog. Part. Nucl. Phys. 98, 119–206 (2018). https://doi.org/10.1016/j.ppnp.2017.09.001

  19. T.A. Rijken, V.G.J. Stoks, Y. Yamamoto, Phys. Rev. C 59, 21 (1999). https://doi.org/10.1103/PhysRevC.59.21

  20. T.A. Rijken, Phys. Rev. C 73, 044007 (2006). https://doi.org/10.1103/PhysRevC.73.044007

  21. T.A. Rijken, Y. Yamamoto, Phys. Rev. C 73, 044008 (2006). https://doi.org/10.1103/PhysRevC.73.044008

  22. T.A. Rijken, M.M. Nagels, Y. Yamamoto, Prog. Theor. Phys. Suppl. 185, 14 (2010). https://doi.org/10.1143/PTPS.185.14

  23. Y. Yamamoto, T. Furumoto, N. Yasutake, T.A. Rijken, Phys. Rev. C 90, 045805 (2014). https://doi.org/10.1103/PhysRevC.90.045805

  24. T.A. Rijken, H.J. Schulze, Eur. Phys. J. A 52(2), 21 (2016). https://doi.org/10.1140/epja/i2016-16021-6

  25. J. Haidenbauer, U.G. Meissner, A. Nogga, H. Polinder, Lect. Notes Phys. 724, 113 (2007). https://doi.org/10.1007/978-3-540-72039-3_4

  26. B. Holzenkamp, K. Holinde, J. Speth, Nucl. Phys. A 500, 485 (1989). https://doi.org/10.1016/0375-9474(89)90223-6

  27. A. Reuber, K. Holinde, J. Speth, Nucl. Phys. A 570, 543 (1994). https://doi.org/10.1016/0375-9474(94)90073-6

  28. M. Dhar, H. Lenske, in Proceedings of the 12th International Conference on Hypernuclear and Strange Particle Physics (HYP2015) (2017). https://doi.org/10.7566/HYP2015; http://journals.jps.jp/doi/abs/10.7566/HYP2015

  29. M. Dhar, Dissertation JLU Giessen (2016)

    Google Scholar 

  30. Y. Fujiwara, M. Kohno, Y. Suzuki, Mod. Phys. Lett. A 24, 1031 (2009). https://doi.org/10.1142/S0217732309000528

  31. M. Kohno, Y. Fujiwara, Phys. Rev. C 79, 054318 (2009). https://doi.org/10.1103/PhysRevC.79.054318

  32. E. Epelbaum, H.W. Hammer, U.G. Meissner, Rev. Mod. Phys. 81, 1773 (2009). https://doi.org/10.1103/RevModPhys.81.1773

  33. E. Hiyama, Nucl. Phys. A 914, 130 (2013). https://doi.org/10.1016/j.nuclphysa.2013.05.011

  34. J. Carlson, S. Gandolfi, F. Pederiva, S.C. Pieper, R. Schiavilla, K.E. Schmidt, R.B. Wiringa, Rev. Mod. Phys. 87, 1067 (2015). https://doi.org/10.1103/RevModPhys.87.1067

  35. D.J. Millener, Nucl. Phys. A 881, 298 (2012). https://doi.org/10.1016/j.nuclphysa.2012.01.019

  36. D.J. Millener, Nucl. Phys. A 914, 109 (2013). https://doi.org/10.1016/j.nuclphysa.2013.01.023

  37. M. Stoitsov, H. Nam, W. Nazarewicz, A. Bulgac, G. Hagen, M. Kortelainen, J.C. Pei, K.J. Roche, N. Schunck, I. Thompson, J.P. Vary, S.M. Wild, UNEDF: advanced scientific computing transforms the low-energy nuclear many-body problem. J. Phys. Conf. Ser. 402, 12033 (2012). https://doi.org/10.1088/1742-6596/402/1/012033

  38. H. Nam et al., J. Phys. Conf. Ser. 402, 012033 (2012). https://doi.org/10.1088/1742-6596/402/1/012033

  39. S. Bogner et al., Comput. Phys. Commun. 184, 2235 (2013). https://doi.org/10.1016/j.cpc.2013.05.020

  40. C.M. Keil, F. Hofmann, H. Lenske, Phys. Rev. C 61, 064309 (2000). https://doi.org/10.1103/PhysRevC.61.064309

  41. H. Lenske, C. Fuchs, Phys. Lett. B 345, 355 (1995). https://doi.org/10.1016/0370-2693(94)01664-X

  42. C. Fuchs, H. Lenske, H.H. Wolter, Phys. Rev. C 52, 3043 (1995). https://doi.org/10.1103/PhysRevC.52.3043

  43. F. Hofmann, C.M. Keil, H. Lenske, Phys. Rev. C 64, 034314 (2001). https://doi.org/10.1103/PhysRevC.64.034314

  44. C. Keil, H. Lenske, Phys. Rev. C 66, 054307 (2002). https://doi.org/10.1103/PhysRevC.66.054307

  45. H. Lenske, Lect. Notes Phys. 641, 147 (2004). https://doi.org/10.1007/978-3-540- 39911-7_5.

  46. A. Fedoseew, H. Lenske, Phys. Rev. C 91(3), 034307 (2015). https://doi.org/10.1103/PhysRevC.91.034307

  47. S. Typel, H.H. Wolter, Nucl. Phys. A 656, 331 (1999). https://doi.org/10.1016/S0375-9474(99)00310-3

  48. D. Vretenar, A.V. Afanasjev, G.A. Lalazissis, P. Ring, Phys. Rep. 409, 101 (2005). https://doi.org/10.1016/j.physrep.2004.10.001

  49. H. Liang, J. Meng, S.G. Zhou, Phys. Rep. 570, 1 (2015). https://doi.org/10.1016/j.physrep.2014.12.005

  50. T. Nikšić, N. Paar, P.G. Reinhard, D. Vretenar, J. Phys. G 42(3), 034008 (2015). https://doi.org/10.1088/0954-3899/42/3/034008

  51. H.J. Schulze, M. Baldo, U. Lombardo, J. Cugnon, A. Lejeune, Phys. Rev. C 57, 704 (1998). https://doi.org/10.1103/PhysRevC.57.704

  52. I. Vidana, A. Polls, A. Ramos, M. Hjorth-Jensen, Nucl. Phys. A 644, 201 (1998). https://doi.org/10.1016/S0375-9474(98)00599-5

  53. D.E. Lanskoy, Y. Yamamoto, Phys. Rev. C 55, 2330 (1997). https://doi.org/10.1103/PhysRevC.55.2330

  54. H.J. Schulze, E. Hiyama, Phys. Rev. C 90(4), 047301 (2014). https://doi.org/10.1103/PhysRevC.90.047301

  55. S. Petschauer, J. Haidenbauer, N. Kaiser, U.G. Meissner, W. Weise, Nucl. Phys. A 957, 347 (2017). https://doi.org/10.1016/j.nuclphysa.2016.09.010

  56. N.K. Glendenning, S.A. Moszkowski, Phys. Rev. Lett. 67, 2414 (1991). https://doi.org/10.1103/PhysRevLett.67.2414

  57. N.K. Glendenning, D. Von-Eiff, M. Haft, H. Lenske, M.K. Weigel, Phys. Rev. C 48, 889 (1993). https://doi.org/10.1103/PhysRevC.48.889

  58. E.N.E. van Dalen, G. Colucci, A. Sedrakian, Phys. Lett. B 734, 383 (2014). https://doi.org/10.1016/j.physletb.2014.06.002

  59. A. Drago, A. Lavagno, G. Pagliara, D. Pigato, Phys. Rev. C 90(6), 065809 (2014). https://doi.org/10.1103/PhysRevC.90.065809

  60. A. Drago, A. Lavagno, G. Pagliara, D. Pigato, Eur. Phys. J. A 52(2), 40 (2016). https://doi.org/10.1140/epja/i2016-16040-3

  61. A. Drago, G. Pagliara, Eur. Phys. J. A 52(2), 41 (2016). https://doi.org/10.1140/epja/i2016-16041-2

  62. K.A. Maslov, E.E. Kolomeitsev, D.N. Voskresensky, J. Phys. Conf. Ser. 798(1), 012070 (2017). https://doi.org/10.1088/1742-6596/798/1/012070

  63. H. Lenske, M. Dhar, N. Tsoneva, J. Wilhelm, EPJ Web Conf. 107, 10001 (2016). https://doi.org/10.1051/epjconf/201610710001

  64. S. Schramm, V. Dexheimer, R. Negreiros, Eur. Phys. J. A 52(1), 14 (2016). https://doi.org/10.1140/epja/i2016-16014-5

  65. C. Patrignani et al., Chin. Phys. C 40(10), 100001 (2016). https://doi.org/10.1088/1674-1137/40/10/100001

  66. J.D. Bjorken, S. Drell, Relativistic Quantum Mechanics (McGraw-Hill Book Company, New York, 1964), 300 pp.

    Google Scholar 

  67. J.J. de Swart, Rev. Mod. Phys. 35, 916 (1963) [Erratum: Rev. Mod. Phys. 37, 326 (1965)]. https://doi.org/10.1103/RevModPhys.35.916.

  68. R. Machleidt, K. Holinde, C. Elster, Phys. Rep. 149, 1 (1987). https://doi.org/10.1016/S0370-1573(87)80002-9

  69. R. Machleidt, Adv. Nucl. Phys. 19, 189 (1989)

    Google Scholar 

  70. R. Blankenbecler, R. Sugar, Phys. Rev. 142, 1051 (1966). https://doi.org/10.1103/PhysRev.142.1051

  71. J. Haidenbauer, U.G. Meissner, S. Petschauer, Nucl. Phys. A 954, 273 (2016). https://doi.org/10.1016/j.nuclphysa.2016.01.006

  72. W. Briscoe et al. (2016). http://gwdac.phys.gwu.edu/

  73. K. Miyagawa, H. Kamada, W. Gloeckle, Nucl. Phys. A 614, 535 (1997). https://doi.org/10.1016/S0375-9474(96)00479-4

  74. F. de Jong, H. Lenske, Phys. Rev. C 57, 3099 (1998). https://doi.org/10.1103/PhysRevC.57.3099

  75. H. Feshbach, Theoretical Nuclear Physics: Nuclear Reactions (Wiley, New York, 1992), 960 p

    Google Scholar 

  76. J. Haidenbauer, U.G. Meissner, Nucl. Phys. A 881, 44 (2012). https://doi.org/10.1016/j.nuclphysa.2012.01.021

  77. N.K. Glendenning, Compact Stars: Nuclear Physics, Particle Physics, and General Relativity (Springer, New York, 1997)

    Google Scholar 

  78. K. Langanke, S.E. Koonin, J.A. Maruhn (eds.), Computational Nuclear Physics. Vol. 2: Nuclear Reactions (Springer, New York, 1993)

    Google Scholar 

  79. Y. Lim, C.H. Hyun, K. Kwak, C.H. Lee, Int. J. Mod. Phys. E 24, 1550100 (2015)

    Google Scholar 

  80. H.P. Duerr, Phys. Rev. 103, 469 (1956). https://doi.org/10.1103/PhysRev.103.469

  81. J.D. Walecka, Ann. Phys. 83, 491 (1974). https://doi.org/10.1016/0003-4916(74)90208-5

  82. J. Boguta, A.R. Bodmer, Nucl. Phys. A 292, 413 (1977). https://doi.org/10.1016/0375-9474(77)90626-1

  83. B.D. Serot, J.D. Walecka, Int. J. Mod. Phys. E 6, 515 (1997). https://doi.org/10.1142/S0218301397000299

  84. K. Maslov, E.E. Kolomeitsev, D.N. Voskresensky, Phys. Lett. B 748, 369 (2015)

    Google Scholar 

  85. A. Ohnishi, K. Tsubakihara, K. Sumiyoshi, C. Ishizuka, S. Yamada, H. Suzuki, Nucl. Phys. A 835, 374 (2010). https://doi.org/10.1016/j.nuclphysa.2010.01.222

  86. S. Weissenborn, D. Chatterjee, J. Schaffner-Bielich, Phys. Rev. C 85(6), 065802 (2012) [Erratum: Phys. Rev. C 90(1), 019904 (2014)]. https://doi.org/10.1103/PhysRevC.85.065802; https://doi.org/10.1103/PhysRevC.90.019904

  87. F. Hofmann, C.M. Keil, H. Lenske, Phys. Rev. C 64, 025804 (2001). https://doi.org/10.1103/PhysRevC.64.025804

  88. C.J. Horowitz, B.D. Serot, Phys. Lett. B 137, 287 (1984). https://doi.org/10.1016/0370-2693(84)91717-9

  89. C.J. Horowitz, B.D. Serot, Phys. Lett. B 140, 181 (1984). https://doi.org/10.1016/0370-2693(84)90916-X

  90. C.J. Horowitz, B.D. Serot, Nucl. Phys. A 464, 613 (1987) [Erratum: Nucl. Phys. A 473, 760 (1987)]. https://doi.org/10.1016/0375-9474(87)90370-8; https://doi.org/10.1016/0375-9474(87)90281-8

  91. A. Migdal, Sov. Phys. JETP 7, 996 (1958)

    Google Scholar 

  92. A. Fetter, J. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971)

    Google Scholar 

  93. G. Bertsch, J. Borysowicz, H. McManus, W.G. Love, Nucl. Phys. A 284, 399 (1977). https://doi.org/10.1016/0375-9474(77)90392-X

  94. F. Hofmann, H. Lenske, Phys. Rev. C 57, 2281 (1998). https://doi.org/10.1103/PhysRevC.57.2281

  95. J. Meng, P. Ring, P. Zhao, Int. Rev. Nucl. Phys. 10, 21 (2016). https://doi.org/10.1142/9789814733267_0002

  96. P. Ring, Int. Rev. Nucl. Phys. 10, 1 (2016). https://doi.org/10.1142/9789814733267_0001

  97. J.W. Negele, Rev. Mod. Phys. 54, 913 (1982). https://doi.org/10.1103/RevModPhys.54.913

  98. H. Lenske, C. Xu, M. Dhar, T. Gaitanos, R. Shyam, in Proceedings of the 12th International Conference on Hypernuclear and Strange Particle Physics (HYP2015) (2017). https://doi.org/10.7566/HYP2015; http://journals.jps.jp/doi/abs/10.7566/HYP2015

  99. H. Hotchi et al., Phys. Rev. C 64, 044302 (2001). https://doi.org/10.1103/PhysRevC.64.044302

  100. M. May et al., Phys. Rev. Lett. 78, 4343 (1997). https://doi.org/10.1103/PhysRevLett.78.4343

  101. T. Hasegawa et al., Phys. Rev. C 53, 1210 (1996). https://doi.org/10.1103/PhysRevC.53.1210

  102. S. Ajimura et al., Nucl. Phys. A 585, 173C (1995). https://doi.org/10.1016/0375-9474(94)00562-2

  103. P.H. Pile et al., Phys. Rev. Lett. 66, 2585 (1991). https://doi.org/10.1103/PhysRevLett.66.2585

  104. J. Mares, B.K. Jennings, Phys. Rev. C 49, 2472 (1994). https://doi.org/10.1103/PhysRevC.49.2472

  105. M. Danysz et al., Phys. Rev. Lett. 11, 29 (1963). https://doi.org/10.1103/PhysRevLett.11.29

  106. H. Takahashi et al., Phys. Rev. Lett. 87, 212502 (2001). https://doi.org/10.1103/PhysRevLett.87.212502

  107. J.K. Ahn et al., Phys. Rev. C 88(1), 014003 (2013). https://doi.org/10.1103/PhysRevC.88.014003

  108. Y. Fujiwara, Y. Suzuki, C. Nakamoto, Prog. Part. Nucl. Phys. 58, 439 (2007). https://doi.org/10.1016/j.ppnp.2006.08.001

  109. I.N. Filikhin, A. Gal, Phys. Rev. C 65, 041001 (2002). https://doi.org/10.1103/PhysRevC.65.041001

  110. I.R. Afnan, B.F. Gibson, Phys. Rev. C 67, 017001 (2003). https://doi.org/10.1103/PhysRevC.67.017001

  111. I. Vidana, A. Ramos, A. Polls, Phys. Rev. C 70, 024306 (2004). https://doi.org/10.1103/PhysRevC.70.024306

  112. T. Yamada, Phys. Rev. C 69, 044301 (2004). https://doi.org/10.1103/PhysRevC.69.044301

  113. Q.N. Usmani, A.R. Bodmer, B. Sharma, Phys. Rev. C 70, 061001 (2004). https://doi.org/10.1103/PhysRevC.70.061001

  114. L. Adamczyk et al., Phys. Rev. Lett. 114(2), 022301 (2015). https://doi.org/10.1103/PhysRevLett.114.022301

  115. K. Morita, T. Furumoto, A. Ohnishi, Phys. Rev. C 91(2), 024916 (2015). https://doi.org/10.1103/PhysRevC.91.024916

  116. P. Finelli, N. Kaiser, D. Vretenar, W. Weise, Nucl. Phys. A 831, 163 (2009). https://doi.org/10.1016/j.nuclphysa.2009.10.083

  117. S. Petschauer, N. Kaiser, J. Haidenbauer, U.G. Meissner, W. Weise, Phys. Rev. C 93(1), 014001 (2016). https://doi.org/10.1103/PhysRevC.93.014001

  118. S. Petschauer, J. Haidenbauer, N. Kaiser, U.G. Meissner, W. Weise, Eur. Phys. J. A 52(1), 15 (2016). https://doi.org/10.1140/epja/i2016-16015-4

  119. R. Wirth, R. Roth, Phys. Rev. Lett. 117, 182501 (2016). https://doi.org/10.1103/PhysRevLett.117.182501

  120. T. Inoue, N. Ishii, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, K. Murano, H. Nemura, K. Sasaki, Prog. Theor. Phys. 124, 591 (2010). https://doi.org/10.1143/PTP.124.591

  121. T. Doi et al., PoS LATTICE2016, 110 (2017)

    Google Scholar 

  122. H. Nemura et al., PoS LATTICE2016, 101 (2017)

    Google Scholar 

  123. N. Ishii et al., PoS LATTICE2016, 127 (2017)

    Google Scholar 

  124. S.R. Beane, M.J. Savage, Phys. Lett. B 535, 177 (2002). https://doi.org/10.1016/S0370-2693(02)01762-8

  125. S.R. Beane, W. Detmold, K. Orginos, M.J. Savage, Prog. Part. Nucl. Phys. 66, 1 (2011). https://doi.org/10.1016/j.ppnp.2010.08.002

  126. S.R. Beane, E. Chang, S.D. Cohen, W. Detmold, H.W. Lin, T.C. Luu, K. Orginos, A. Parreno, M.J. Savage, A. Walker-Loud, Phys. Rev. Lett. 109, 172001 (2012). https://doi.org/10.1103/PhysRevLett.109.172001

  127. K. Orginos, A. Parreno, M.J. Savage, S.R. Beane, E. Chang, W. Detmold, Phys. Rev. D 92(11), 114512 (2015). https://doi.org/10.1103/PhysRevD.92.114512

  128. R.H. Dalitz, F. Von Hippel, Phys. Lett. 10, 153 (1964). https://doi.org/10.1016/0031-9163(64)90617-1

  129. Z. Fodor, C. Hoelbling, Rev. Mod. Phys. 84, 449 (2012). https://doi.org/10.1103/RevModPhys.84.449

  130. H. Sanchis-Alepuz, C.S. Fischer, Phys. Rev. D 90(9), 096001 (2014). https://doi.org/10.1103/PhysRevD.90.096001

  131. F. Aceti, E. Oset, Phys. Rev. D 86, 014012 (2012). https://doi.org/10.1103/PhysRevD.86.014012

  132. F. Aceti, L.R. Dai, L.S. Geng, E. Oset, Y. Zhang, Eur. Phys. J. A 50, 57 (2014). https://doi.org/10.1140/epja/i2014-14057-2

  133. W.C. Chang, J.C. Peng, Phys. Rev. Lett. 106, 252002 (2011). https://doi.org/10.1103/PhysRevLett.106.252002

  134. W.C. Chang, J.C. Peng, Phys. Lett. B 704, 197 (2011). https://doi.org/10.1016/j.physletb.2011.08.077

  135. S. Sarkar, E. Oset, M.J. Vicente Vacas, Nucl. Phys. A 750, 294 (2005) [Erratum: Nucl. Phys. A 780, 90 (2006)]. https://doi.org/10.1016/j.nuclphysa.2005.01.006; https://doi.org/10.1016/j.nuclphysa.2006.09.019

  136. S. Sarkar, B.X. Sun, E. Oset, M.J. Vicente Vacas, Eur. Phys. J. A 44, 431 (2010). https://doi.org/10.1140/epja/i2010-10956-4

  137. Y. Kamiya, K. Miyahara, S. Ohnishi, Y. Ikeda, T. Hyodo, E. Oset, W. Weise, Nucl. Phys. A 954, 41 (2016). https://doi.org/10.1016/j.nuclphysa.2016.04.013

  138. F. Aceti, E. Oset, L. Roca, Phys. Rev. C 90(2), 025208 (2014). https://doi.org/10.1103/PhysRevC.90.025208

  139. C.W. Xiao, F. Aceti, M. Bayar, Eur. Phys. J. A 49, 22 (2013). https://doi.org/10.1140/epja/i2013-13022-y

  140. Q.B. Li, P.N. Shen, A. Faessler, Phys. Rev. C 65, 045206 (2002). https://doi.org/10.1103/PhysRevC.65.045206

  141. R.L. Jaffe, Phys. Rev. Lett. 38, 195 (1977) [Erratum: Phys. Rev. Lett. 38, 617 (1977)]. https://doi.org/10.1103/PhysRevLett.38.195

  142. G.F. Bertsch, B.A. Li, G.E. Brown, V. Koch, Nucl. Phys. A 490, 745 (1988). https://doi.org/10.1016/0375-9474(88)90024-3

  143. J. Helgesson, J. Randrup, Ann. Phys. 244, 12 (1995). https://doi.org/10.1006/aphy.1995.1106

  144. A.B. Larionov, U. Mosel, Nucl. Phys. A 728, 135 (2003). https://doi.org/10.1016/j.nuclphysa.2003.08.005

  145. V. Shklyar, H. Lenske, Phys. Rev. C 80, 058201 (2009). https://doi.org/10.1103/PhysRevC.80.058201

  146. M. Martini, M. Ericson, G. Chanfray, J. Marteau, Phys. Rev. C 80, 065501 (2009). https://doi.org/10.1103/PhysRevC.80.065501

  147. M. Martini, M. Ericson, G. Chanfray, J. Marteau, Phys. Rev. C 81, 045502 (2010). https://doi.org/10.1103/PhysRevC.81.045502

  148. J. Nieves, I. Ruiz Simo, M.J. Vicente Vacas, Phys. Rev. C 83, 045501 (2011). https://doi.org/10.1103/PhysRevC.83.045501

  149. F. Osterfeld, Rev. Mod. Phys. 64, 491 (1992). https://doi.org/10.1103/RevModPhys.64.491

  150. T. Udagawa, P. Oltmanns, F. Osterfeld, S.W. Hong, Phys. Rev. C 49, 3162 (1994). https://doi.org/10.1103/PhysRevC.49.3162

  151. I. Vidana, J. Benlliure, H. Geissel, H. Lenske, C. Scheidenberger, J. Vargas, EPJ Web Conf. 107, 10003 (2016). https://doi.org/10.1051/epjconf/201610710003

  152. J. Benlliure et al., Nuovo Cim. C 39(6), 401 (2016). https://doi.org/10.1393/ncc/i2016-16401-0

  153. T.E.O. Ericson, W. Weise, Pions and Nuclei, vol. 74 (Clarendon Press, Oxford, 1988). http://www-spires.fnal.gov/spires/find/books/www?cl=QC793.5.M42E75::1988

  154. V. Dmitriev, O. Sushkov, C. Gaarde, Nucl. Phys. A 459, 503 (1986). https://doi.org/10.1016/0375-9474(86)90158-2

  155. G.E. Brown, W. Weise, Phys. Rep. 22, 279 (1975). https://doi.org/10.1016/0370-1573(75)90026-5

  156. E. Oset, H. Toki, W. Weise, Phys. Rep. 83, 281 (1982). https://doi.org/10.1016/0370-1573(82)90123-5

  157. J. Meyer-Ter-Vehn, Phys. Rep. 74(4), 323 (1981). https://doi.org/http://dx.doi.org/10.1016/0370-1573(81)90151-4; http://www.sciencedirect.com/science/article/pii/0370157381901514

  158. A.B. Migdal, E.E. Saperstein, M.A. Troitsky, D.N. Voskresensky, Phys. Rep. 192, 179 (1990). https://doi.org/10.1016/0370-1573(90)90132-L

  159. E. Oset, M. Rho, Phys. Rev. Lett. 42, 47 (1979). https://doi.org/10.1103/PhysRevLett.42.47

  160. E. Oset, W. Weise, Nucl. Phys. A 319, 477 (1979). https://doi.org/10.1016/0375-9474(79)90527-X

  161. C. Garcia-Recio, E. Oset, L.L. Salcedo, D. Strottman, M.J. Lopez, Nucl. Phys. A 526, 685 (1991). https://doi.org/10.1016/0375-9474(91)90438-C

  162. K. Wehrberger, R. Wittman, Nucl. Phys. A 513, 603 (1990). https://doi.org/10.1016/0375-9474(90)90400-G

  163. E. Oset, L.L. Salcedo, Nucl. Phys. A 468, 631 (1987). https://doi.org/10.1016/0375-9474(87)90185-0

  164. A. Fedoseew, JLU Giessen (2017)

    Google Scholar 

  165. R.M. Sealock et al., Phys. Rev. Lett. 62, 1350 (1989). https://doi.org/10.1103/PhysRevLett.62.1350

    Article  ADS  Google Scholar 

  166. P. Barreau et al., Nucl. Phys. A 402, 515 (1983). https://doi.org/10.1016/0375-9474(83)90217-8

    Article  ADS  Google Scholar 

  167. J.S. O’Connell et al., Phys. Rev. Lett. 53, 1627 (1984). https://doi.org/10.1103/PhysRevLett.53.1627

    Article  ADS  Google Scholar 

  168. P.K.A. de Witt Huberts, J. Phys. G 16, 507 (1990). https://doi.org/10.1088/0954-3899/16/4/004

    Article  ADS  Google Scholar 

  169. T. De Forest Jr., J.D. Walecka, Adv. Phys. 15, 1 (1966). https://doi.org/10.1080/00018736600101254

    Article  ADS  Google Scholar 

  170. O. Benhar, D. day, I. Sick, Rev. Mod. Phys. 80, 189 (2008). https://doi.org/10.1103/RevModPhys.80.189

  171. L.h. Xia, P.J. Siemens, M. Soyeur, Nucl. Phys. A 578, 493 (1994). https://doi.org/10.1016/0375-9474(94)90757-9

  172. J. Piekarewicz, Int. J. Mod. Phys. E 24(09), 1541003 (2015). https://doi.org/10.1142/S0218301315410037

    Article  ADS  Google Scholar 

  173. R.M. Edelstein, E.J. Makuchowski, C.M. Meltzer, E.L. Miller, J.S. Russ, B. Gobbi, J.L. Rosen, H.A. Scott, S.L. Shapiro, L. Strawczynski, Phys. Rev. Lett. 38, 185 (1977). https://doi.org/10.1103/PhysRevLett.38.185

    Article  ADS  Google Scholar 

  174. C.G. Cassapakis et al., Phys. Lett. B 63, 35 (1976). https://doi.org/10.1016/0370-2693(76)90462-7

    Article  ADS  Google Scholar 

  175. D.A. Lind, Can. J. Phys. 65, 637 (1987). https://doi.org/10.1139/p87-090

    Article  ADS  Google Scholar 

  176. B.E. Bonner, J.E. Simmons, C.R. Newsom, P.J. Riley, G. Glass, J.C. Hiebert, M. Jain, L.C. Northcliffe, Phys. Rev. C 18, 1418 (1978). https://doi.org/10.1103/PhysRevC.18.1418

    Article  ADS  Google Scholar 

  177. B.E. Bonner, J.E. Simmons, C.L. Hollas, C.R. Newsom, P.J. Riley, G. Glass, M. Jain, Phys. Rev. Lett. 41, 1200 (1978). https://doi.org/10.1103/PhysRevLett.41.1200

    Article  ADS  Google Scholar 

  178. T. Hennino et al., Phys. Rev. Lett. 48, 997 (1982). https://doi.org/10.1103/PhysRevLett.48.997

    Article  ADS  Google Scholar 

  179. D. Contardo et al., Phys. Lett. B 168, 331 (1986). https://doi.org/10.1016/0370-2693(86)91639-4

    Article  ADS  Google Scholar 

  180. D. Bachelier et al., Phys. Lett. B 172, 23 (1986). https://doi.org/10.1016/0370-2693(86)90209-1

    Article  ADS  Google Scholar 

  181. D. Krpic, J. Puzovic, S. Drndarevic, R. Maneska, S. Backovic, J. Bogdanowicz, A.P. Cheplakov, S.Y. Sivoklokov, V.G. Grishin, Phys. Rev. C 46, 2501 (1992). https://doi.org/10.1103/PhysRevC.46.2501

    Article  ADS  Google Scholar 

  182. D. Krpic, G. Skoro, I. Picuric, S. Backovic, S. Drndarevic, Phys. Rev. C 65, 034909 (2002). https://doi.org/10.1103/PhysRevC.65.034909

    Article  ADS  Google Scholar 

  183. T. Hennino et al., Phys. Lett. B 283, 42 (1992). https://doi.org/10.1016/0370-2693(92)91423-7

    Article  ADS  Google Scholar 

  184. T. Hennino et al., Phys. Lett. B 303, 236 (1993). https://doi.org/10.1016/0370-2693(93)91426-N

    Article  ADS  Google Scholar 

  185. J. Chiba et al., Phys. Rev. Lett. 67, 1982 (1991). https://doi.org/10.1103/PhysRevLett.67.1982

    Article  ADS  Google Scholar 

  186. S. Das, Phys. Rev. C 66, 014604 (2002). https://doi.org/10.1103/PhysRevC.66.014604

    Article  ADS  Google Scholar 

  187. K.K. Olimov, S.L. Lutpullaev, K. Olimov, K.G. Gulamov, J.K. Olimov, Phys. Rev. C 75, 067901 (2007). https://doi.org/10.1103/PhysRevC.75.067901

    Article  ADS  Google Scholar 

  188. K.K. Olimov, Phys. Atom. Nucl. 71, 93 (2008) [Yad. Fiz. 71, 94 (2008)]. https://doi.org/10.1007/s11450-008-1010-2.

  189. L. Simic, M.V. Milosavljevic, I. Mendas, D. Krpic, D.S. Popovic, Phys. Rev. C 80, 017901 (2009). https://doi.org/10.1103/PhysRevC.80.017901

    Article  ADS  Google Scholar 

  190. K.K. Olimov, M.Q. Haseeb, I. Khan, A.K. Olimov, V.V. Glagolev, Phys. Rev. C 85, 014907 (2012). https://doi.org/10.1103/PhysRevC.85.014907

    Article  ADS  Google Scholar 

  191. D. Krpic, S. Drndarevic, J. Ilic, G. Skoro, I. Picuric, S. Backovic, Eur. Phys. J. A 20, 351 (2004). https://doi.org/10.1140/epja/i2003-10175-2

    Article  ADS  Google Scholar 

  192. V. Metag, Prog. Part. Nucl. Phys. 30, 75 (1993). https://doi.org/10.1016/0146-6410(93)90007-3

    Article  ADS  Google Scholar 

  193. V. Metag, Nucl. Phys. A 553, 283C (1993). https://doi.org/10.1016/0375-9474(93)90629-C

    Article  ADS  Google Scholar 

  194. T. Udagawa, S.W. Hong, F. Osterfeld, Phys. Lett. B 245, 1 (1990). https://doi.org/10.1016/0370-2693(90)90154-X.

    Article  ADS  Google Scholar 

  195. B. Koerfgen, F. Osterfeld, T. Udagawa, Phys. Rev. C 50, 1637 (1994). https://doi.org/10.1103/PhysRevC.50.1637

    Article  ADS  Google Scholar 

  196. M. Trzaska et al., Z. Phys. A 340, 325 (1991). https://doi.org/10.1007/BF01294681

    Article  ADS  Google Scholar 

  197. E. Oset, L.L. Salcedo, D. Strottman, Phys. Lett. B 165, 13 (1985). https://doi.org/10.1016/0370-2693(85)90681-1

    Article  ADS  Google Scholar 

  198. J. Aichelin, Phys. Rep. 202, 233 (1991). https://doi.org/10.1016/0370-1573(91)90094-3

    Article  ADS  Google Scholar 

  199. W. Cassing, V. Metag, U. Mosel, K. Niita, Phys. Rep. 188, 363 (1990). https://doi.org/10.1016/0370-1573(90)90164-W

    Article  ADS  Google Scholar 

  200. H. Stoecker, W. Greiner, Phys. Rep. 137, 277 (1986). https://doi.org/10.1016/0370-1573(86)90131-6

    Article  ADS  Google Scholar 

  201. U. Mosel, Ann. Rev. Nucl. Part. Sci. 41, 29 (1991). https://doi.org/10.1146/annurev.ns.41.120191.000333

    Article  ADS  Google Scholar 

  202. M. Eskef et al., Eur. Phys. J. A 3, 335 (1998). https://doi.org/10.1007/s100500050188

    Article  ADS  Google Scholar 

  203. E.L. Hjort et al., Phys. Rev. Lett. 79, 4345 (1997). https://doi.org/10.1103/PhysRevLett.79.4345

    Article  ADS  Google Scholar 

  204. G.E. Brown, M. Rho, Phys. Rev. Lett. 66, 2720 (1991). https://doi.org/10.1103/PhysRevLett.66.2720

    Article  ADS  Google Scholar 

  205. R. Rapp, Nucl. Phys. A 725, 254 (2003). https://doi.org/10.1016/S0375-9474(03)01581-1

    Article  ADS  Google Scholar 

  206. E.V. Shuryak, G.E. Brown, Nucl. Phys. A 717, 322 (2003). https://doi.org/10.1016/S0375-9474(03)00672-9

    Article  ADS  Google Scholar 

  207. G. Bertsch, S. Das Gupta, Phys. Rep. 160, 189 (1988)

    Article  ADS  Google Scholar 

  208. W. Ehehalt, W. Cassing, A. Engel, U. Mosel, G. Wolf, Phys. Rev. C 47, R2467 (1993). https://doi.org/10.1103/PhysRevC.47.R2467

    Article  ADS  Google Scholar 

  209. S.A. Bass, C. Hartnack, H. Stoecker, W. Greiner, Phys. Rev. C 51, 3343 (1995). https://doi.org/10.1103/PhysRevC.51.3343

    Article  ADS  Google Scholar 

  210. S. Teis, W. Cassing, M. Effenberger, A. Hombach, U. Mosel, G. Wolf, Z. Phys. A 356, 421 (1997). https://doi.org/10.1007/BF02769248,10.1007/s002180050198

    Google Scholar 

  211. S. Teis, W. Cassing, M. Effenberger, A. Hombach, U. Mosel, G. Wolf, Z. Phys. A 359, 297 (1997). https://doi.org/10.1007/s002180050405

    Google Scholar 

  212. J. Helgesson, J. Randrup, Phys. Lett. B 411, 1 (1997). https://doi.org/10.1016/S0370-2693(97)00965-9

    Article  ADS  Google Scholar 

  213. J. Helgesson, J. Randrup, Phys. Lett. B 439, 243 (1998). https://doi.org/10.1016/S0370-2693(98)01109-5

    Article  ADS  Google Scholar 

  214. H. Weber, E.L. Bratkovskaya, W. Cassing, H. Stoecker, Phys. Rev. C 67, 014904 (2003). https://doi.org/10.1103/PhysRevC.67.014904

    Article  ADS  Google Scholar 

  215. D. Pelte et al., Z. Phys. A 357, 215 (1997). https://doi.org/10.1007/s002180050236

    Article  ADS  Google Scholar 

  216. A.B. Larionov, W. Cassing, S. Leupold, U. Mosel, Nucl. Phys. A 696, 747 (2001). https://doi.org/10.1016/S0375-9474(01)01216-7

    Article  ADS  Google Scholar 

  217. J. Helgesson, J. Randrup, Ann. Phys. 274, 1 (1999). https://doi.org/10.1006/aphy.1999.5906

    Article  ADS  Google Scholar 

  218. P.A. Henning, H. Umezawa, Nucl. Phys. A 571, 617 (1994). https://doi.org/10.1016/0375-9474(94)90713-7

    Article  ADS  Google Scholar 

  219. C.L. Korpa, R. Malfliet, Phys. Rev. C 52, 2756 (1995). https://doi.org/10.1103/PhysRevC.52.2756

    Article  ADS  Google Scholar 

  220. M. Hirata, J.H. Koch, E.J. Moniz, F. Lenz, Ann. Phys. 120, 205 (1979). https://doi.org/10.1016/0003-4916(79)90287-2

    Article  ADS  Google Scholar 

  221. O. Buss, L. Alvarez-Ruso, A.B. Larionov, U. Mosel, Phys. Rev. C 74, 044610 (2006). https://doi.org/10.1103/PhysRevC.74.044610

    Article  ADS  Google Scholar 

  222. S.A. Wood, J.L. Matthews, E.R. Kinney, P.A.M. Gram, G.A. Rebka, D.A. Roberts, Phys. Rev. C 46, 1903 (1992). https://doi.org/10.1103/PhysRevC.46.1903

    Article  ADS  Google Scholar 

  223. J. Vargas, J. Benlliure, M. Caamano, Nucl. Instrum. Methods A 707, 16 (2013). https://doi.org/10.1016/j.nima.2012.12.087

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Many members and guests of the Giessen group have been contributing to the work summarized in this article. Contributions especially by C. Keil and A. Fedoseew, S. Bender, Th. Gaitanos (now at U. Thessaloniki), R. Shyam (Saha Institute, Kolkatta), and V. Shklyar are gratefully acknowledged. Supported by DFG, contract Le439/9 and SFB/TR16, project B7, BMBF, contract 05P12RGFTE, GSI Darmstadt, and Helmholtz International Center for FAIR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Lenske .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lenske, H., Dhar, M. (2018). Hyperons and Resonances in Nuclear Matter. In: Scheidenberger, C., Pfützner, M. (eds) The Euroschool on Exotic Beams - Vol. 5. Lecture Notes in Physics, vol 948. Springer, Cham. https://doi.org/10.1007/978-3-319-74878-8_5

Download citation

Publish with us

Policies and ethics