Skip to main content

Applications of 14C, the Most Versatile Radionuclide to Explore Our World

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 948))

Abstract

Carbon consists of the two stable isotopes (12C and 13C) often accompanied with minute traces of the long-lived radioisotope 14C (half-life = 5700 years). This allows one to use isotope-sensitive methods to trace carbon throughout the environment at large on Earth. In particular, 14C can be used for dating during the past 50,000 years. It has thus revolutionized archaeology, but also many fields of geophysics. Although 14C is a cosmogenic radionuclide produced primarily by cosmic-ray interaction in the atmosphere, the dramatic increase of 14C by the atmospheric nuclear weapons testing period generated a characteristic spike (14C bomb peak) in the early 1960s, which can be used for a variety of unique applications. After describing the basic properties of 14C, the current review focusses on applications of both cosmogenic and anthropogenic 14C, emphasizing the versatility of this extraordinary radionuclide.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. W.F. Libby, Atmospheric helium three and radiocarbon from cosmic radiation. Phys. Rev. 69, 671 (1946)

    Article  ADS  Google Scholar 

  2. E.C. Anderson, W.F. Libby, S. Weinhouse, A.F. Reid, A.D. Kirshenbaum, A.V. Grosse, Natural radiocarbon from cosmic radiation. Phys. Rev. 72, 931 (1947)

    Article  ADS  Google Scholar 

  3. J.R. Arnold, W.F. Libby, Age determination by radiocarbon content: checks with samples of known age. Science 110, 678 (1949)

    Article  ADS  Google Scholar 

  4. J.W. Holt, G.E. Brown, T.T.S. Kuo, J.D. Holt, R. Machleidt, Shell model description of the 14C dating ß decay with Brown-Rho-scaled NN interactions. Phys. Rev. Lett. 100, 062501 (2008)

    Article  ADS  Google Scholar 

  5. J.W. Holt, N. Kaiser, W. Weise, Chiral three-nucleon interaction and the 14C-dating ß decay. Phys. Rev. C 79, 054331 (2009)

    Article  ADS  Google Scholar 

  6. W. Kutschera, Applications of accelerator mass spectrometry. Int. J. Mass Spectrom. 349–350, 203 (2013)

    Article  Google Scholar 

  7. P. Crutzen, in My Life with O 3 , NOx and Other YSOxs, ed. by B.G. Malmström. Nobel Lectures in Chemistry 1991–1995, (World Scientific Publishing, Singapore, 1997), pp. 189–242

    Google Scholar 

  8. B.J. Bjork et al., Direct frequency comb measurement of OD + CO → DOCO kinetics. Science 354, 444 (2016)

    Article  ADS  Google Scholar 

  9. H. de Vries, Variaton in concentration of radiocarbon with time and location on earth. Proc. Koninkl. Nederl. Akad. Wetenschappen B 61, 94 (1958)

    Google Scholar 

  10. W.F. Libby, Accuracy of radiocarbon dates. Science 140, 278 (1963)

    Article  ADS  Google Scholar 

  11. B. Kromer, Radiocarbon and dendrochronology. Dendrochronologia 27, 15 (2009)

    Article  Google Scholar 

  12. M. Stuiver et al., INTCAL98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40(3), 1041 (1998)

    Article  Google Scholar 

  13. J. Masarik, J. Beer, Simulation of particle fluxes and cosmogenic nuclide production in the Earth’s atmosphere. J. Geophys. Res. 104(D10), 12,099 (1999)

    Article  ADS  Google Scholar 

  14. T.P. Guilderson, P.J. Reimer, T.A. Brown, The boon and bane of radiocarbon dating. Science 307, 362 (2005)

    Article  Google Scholar 

  15. C. Bronk Ramsey et al., A complete terrestrial radiocarbon record for 11.2 to 52.8 kyr B.P. Science 338, 370 (2012)

    Article  ADS  Google Scholar 

  16. P.J. Reimer et al., INTCAL13 and MARINE13 radiocarbon age calibration curves 0-50,000 years cal BP. Radiocarbon 55, 1869 (2013)

    Article  Google Scholar 

  17. M.W. Dee et al., Investigating the likelihood of a reservoir offset in the radiocarbon record for ancient Egypt. J. Archaeol. Sci. 37, 687 (2010)

    Article  Google Scholar 

  18. J. Szabo, I. Carmi, D. Segal, E. Mintz, An attempt at absolute 14C dating. Radiocarbon 40(1), 77 (1998)

    Article  Google Scholar 

  19. F. Miyake, K. Nagaya, K. Masuda, T. Nakamura, A signature of cosmic-ray increase in AD 774-774. Nature 486, 240 (2012)

    ADS  Google Scholar 

  20. M.W. Dee, B.J.S. Pope, Anchoring historical sequences using a new source of astro-chronological tie-points. Proc. R. Soc. A 472, 20160263 (2016)

    Article  ADS  Google Scholar 

  21. R.A. Muller, Radioisotope dating with a cyclotron. Science 196, 489 (1977)

    Article  ADS  Google Scholar 

  22. K.H. Purser, R.B. Liebert, A.E. Litherland, R.P. Beukens, H.E. Gove, C.L. Bennet, H.R. Clover, W.E. Sondheim, An attempt to detect stable N- ions from a sputter ion source and some implications of the results on the design of tandems for ultrasensitive carbon analysis. Rev. Phys. Appl. 12, 1487 (1977)

    Article  Google Scholar 

  23. C.L. Bennet, R.P. Beukens, M.R. Clover, H.E. Gove, R.B. Liebert, A.E. Litherland, K.H. Purser, W.E. Sondheim, Radiocarbon dating using electrostatic accelerators: negative ions provide the key. Science 198, 508 (1977)

    Article  ADS  Google Scholar 

  24. D.E. Nelson, R.G. Korteling, W.R. Stott, Carbon-14: direct detection at natural concentrations. Science 198, 507 (1977)

    Article  ADS  Google Scholar 

  25. P. Steier et al., Preparation methods of μg carbon samples for 14C measurements. Radiocarbon 59(3), 803 (2017)

    Article  Google Scholar 

  26. H.-A. Synal, Developments in accelerator mass spectrometry. Int. J. Mass Spectrom. 349–350, 192 (2013)

    Article  Google Scholar 

  27. D.E. Murnick, O. Dogru, E. Ilkmen, Intracavity optogalvanic spectroscopy. An analytical technique for 14C analysis with subattomole sensitivity. Anal. Chem. 80, 4820 (2008)

    Article  Google Scholar 

  28. I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, G. Giusfredi, Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection. Phys. Rev. Lett. 107, 270802 (2011)

    Article  Google Scholar 

  29. A. Persson, G. Eilers, L. Rydersors, E. Mukhtar, G. Possnert, M. Salehpour, Evaluation of intracavity optogalvanic spectroscopy for radiocarbon measurements. Anal. Chem. 85, 6790 (2013)

    Article  Google Scholar 

  30. D. Paul, H.A.J. Meijer, Intracavity optogalvanic spectroscopy not suitable for ambient level radiocarbon detection. Anal. Chem. 87, 9025 (2015)

    Article  Google Scholar 

  31. C.G. Carson, M. Stute, Y. Ji, R. Polle, A. Reboul, K.S. Lackner, Invalidation of the intracavity optogalvanic method for radiocarbon detection. Radiocarbon 58(1), 213 (2016)

    Article  Google Scholar 

  32. I. Galli et al., Optical detection of radiocarbon dioxide: first results and AMS intercomparison. Radiocarbon 55(2–3), 213 (2013)

    Article  Google Scholar 

  33. A.D. McCartt, T. Ognibene, G. Bench, K. Turteltaub, Measurements of carbon-14 with cavity ring-down spectroscopy. Nucl. Instrum. Methods Phys. Res. B 361, 277 (2015)

    Article  ADS  Google Scholar 

  34. G. Genoud, M. Vainio, H. Phillips, J. Dean, M. Merimaa, Radiocarbon dioxide detection based on cavity ring-down spectroscopy and a quantum cascade laser. Opt. Lett. 40, 1342 (2015)

    Article  ADS  Google Scholar 

  35. I. Galli et al., Spectroscopic detection of radiocarbon dioxide at parts-per-quadrillion sensitivity. Optica 3(4), 385 (2016)

    Article  Google Scholar 

  36. R.M. Wilson, Smaller, faster, cheaper detection or radiocarbon. Phys. Today 69(6), 19 (2016)

    Article  Google Scholar 

  37. H.-A. Synal, M. Stocker, M. Suter, MICADAS: a new compact radiocarbon AMS system. Nucl. Instrum. Methods Phys. Res. B 259, 7 (2007)

    Article  ADS  Google Scholar 

  38. M. Seiler, S. Maxeiner, L. Wacker, H.-A. Synal, Status of mass spectrometric radiocarbon detection at ETHZ. Nucl. Instrum. Methods Phys. Res. B 361, 245 (2015)

    Article  ADS  Google Scholar 

  39. W. Kutschera, W. Müller, “Isotope language” of the Alpine Iceman investigated with AMS and MS. Nucl. Instrum. Methods Phys. Res. B 204, 705 (2003)

    Article  ADS  Google Scholar 

  40. W. Kutschera et al., Evidence for early human presence at high altitudes in the Ötztal Alps (Austria/Italy). Radiocarbon 56(3), 923 (2014)

    Article  Google Scholar 

  41. H. Oberhummer, A. Csótó, H. Schlattl, Stellar production rates of carbon and its abundance in the universe. Science 289, 88 (2000)

    Article  ADS  Google Scholar 

  42. W. Kutschera et al., Long-lived noble gas radionuclides. Nucl. Instrum Methods Phys. Res. B 92, 241 (1994)

    Article  ADS  Google Scholar 

  43. J.A. Simpson, Neutrons produced in the atmosphere by cosmic radiation. Phys. Rev. 83, 1175 (1951)

    Article  ADS  Google Scholar 

  44. M. Stuiver, H.A. Pollach, Discussion reporting of 14C data. Radiocarbon 19(3), 355 (1977)

    Article  Google Scholar 

  45. S.M. Fahrni, J.R. Southon, G.M. Santos, S.W.L. Palstra, H.A.J. Meijer, X. Xu, Reassessment of the 13C/12C and 14C/12C isotopic fractionation ratio and its impact on high-precision radiocarbon dating. Geochim. Cosmochim. Acta 213, 330 (2017)

    Article  ADS  Google Scholar 

  46. C.N. Waters et al., The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351, 137 (2016)

    Article  Google Scholar 

  47. P.J. Crutzen, Geology of mankind. Nature 415, 23 (2002)

    Article  ADS  Google Scholar 

  48. V.F. Hess, Über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten. Phys. Z. 13, 1084 (1912)

    Google Scholar 

  49. H.E. Suess, Radiocarbon concentration in modem wood. Science 122, 415 (1955)

    Article  ADS  Google Scholar 

  50. T.A. Rafter, G.J. Ferguson, “Atom bomb effect”-recent increase of carbon-14 content of the atmosphere and biosphere. Science 126, 557 (1957)

    Article  ADS  Google Scholar 

  51. W.S. Broecker, A. Schulert, E.A. Olson, Bomb carbon-14 in human beings. Science 130, 331 (1959)

    Article  ADS  Google Scholar 

  52. I. Levin, V. Hesshaimer, Radiocarbon – a unique tracer of global carbon cycle dynamics. Radiocarbon 42(1), 69 (2000)

    Article  Google Scholar 

  53. Q. Hua, M. Barbetti, A.Z. Rakowski, Atmospheric radiocarbon for the period 1950-2010. Radiocarbon 55(4), 2059 (2013)

    Article  Google Scholar 

  54. H.D. Graven, Impact of fossil fuel emissions on atmospheric radiocarbon and various applications of radiocarbon over this century. Proc. Natl. Acad. Sci. 112, 9542 (2015)

    Article  ADS  Google Scholar 

  55. W. Kutschera, Accelerator mass spectrometry: state of the art and perspectives. Adv. Phys. X 1(4), 570 (2016)

    Google Scholar 

  56. I. Levin et al., 25 years of tropospheric 14C observations in Central Europe. Radiocarbon 27(1), 1 (1985)

    Article  Google Scholar 

  57. H.A.J. Meijer, M.H. Pertuisot, J. van der Plicht, High-accuracy 14C measurements for atmospheric CO2 samples by AMS. Radiocarbon 48(3), 355 (2006)

    Article  Google Scholar 

  58. H.D. Graven, T.P. Guilderson, R.F. Keeling, Observations of radiocarbon in CO2 at seven global sampling sites in the Scripps flask network: analysis of spatial gradients and seasonal cycles. J. Geophys. Res. 117, D02303 (2012)

    ADS  Google Scholar 

  59. C.A.M. Brenninkmeijer et al., Interhemispheric asymmetry in OH abundance inferred from measurements of atmospheric 14CO. Nature 356, 50 (1992)

    Article  ADS  Google Scholar 

  60. W. Rom et al., A detailed 2-year record of atmospheric 14CO in the temperate northern hemisphere. Nucl. Instr. Meth. Phys. Res. B 161–163, 780 (2000)

    Article  Google Scholar 

  61. V. Gros et al., Detailed analysis of the isotopic composition of CO and characterization of the air masses arriving at Mount Sonnblick (AustrianAlps). J. Geophys. Res. 106(D3), 3179 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  62. C. Bronk Ramsey, C.A.M. Brenninkmeijer, P. Jöckel, H. Kjeldsen, J. Masarik, Direct measurements of the radiocarbon production at altitude. Nucl. Instrum. Methods Phys. Res. B 259, 558 (2007)

    Article  ADS  Google Scholar 

  63. J. Lelieveld et al., New directions: watching over tropospheric hydroxyl. Atmos. Environ. 40, 5741 (2006)

    Article  ADS  Google Scholar 

  64. T.E. Graedel, P.J. Crutzen, Chemie der Atmosphäre (Spektrum AkademischerVerlag, Heidelberg, 1994), p. 551

    Google Scholar 

  65. J.H. Butler, The NOAA Annual Greenhouse Gas Index (AGGI), (2017) updates are available on the web http://www.esrl.noaa.gov/gmd/aggi/

  66. D.C. Lowe, C.A.M. Brenninkmeijer, M.R. Manning, R. Sparks, G. Wallace, Radio-carbon determination of atmospheric methane at Baring Head, New Zealand. Nature 332, 522 (1988)

    Article  ADS  Google Scholar 

  67. R. Eisma, K. van der Borg, A.F.M. de Jong, W.M. Kieskamp, A.C. Veltkamp, Measurements of the 14C content of atmospheric methane in The Netherlands to determine the regional emissions of 14CH4. Nucl. Instrum. Methods. Phys. Res. B 92, 410 (1994)

    Article  ADS  Google Scholar 

  68. P. Quay, J. Stutsman, D. Wilbur, A. Snover, E. Dlugokencky, T. Brown, The isotopic composition of atmospheric methane. Global. Biogeochem. Cycles 13, 445 (1999)

    Article  ADS  Google Scholar 

  69. V.V. Petrenko et al., 14CH4 measurements in Greenland Ice: investigating last glacial termination CH4 sources. Science 324, 506 (2009)

    Article  ADS  Google Scholar 

  70. G. Anglada-Escude et al., A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature 536, 437 (2016)

    Article  ADS  Google Scholar 

  71. M. Gillon et al., Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542, 456 (2017)

    Article  ADS  Google Scholar 

  72. W.S. Broecker, T. Peng, Z. Beng, Tracers in the Sea (Eldigio Press, Palisades, 1982), p. 690

    Google Scholar 

  73. W.S. Broecker, A. Mix, M. Andree, H. Oeschger, Radiocarbon measurements on coexisting benthic and planktic foraminifera shells: potential for reconstruc-ting ocean ventilation times over the past 20000 years. Nucl. Instrum. Methods. Phys. Res. B 5, 331 (1984)

    Article  ADS  Google Scholar 

  74. W.S. Broecker, The great ocean conveyor. Oceanography 4, 79 (1991)

    Article  Google Scholar 

  75. W.S. Broecker, The carbon cycle and climate change: memoirs of my 60 years in science. Geochem. Perspect. 1, 221 (2012)

    Article  Google Scholar 

  76. S. Rahmstorf, Ocean circulation and climate during the past 120,000 years. Nature 419, 207 (2002)

    Article  ADS  Google Scholar 

  77. A.P. Mc Nichol et al., Ten years after—the WOCE AMS radiocarbon program. Nucl. Instrum. Methods. Phys. Res. B 172, 479 (2000)

    Article  ADS  Google Scholar 

  78. R.M. Key et al., A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP). Glob. Biogeochem. Cycles 18, 1 (2004)

    Article  Google Scholar 

  79. H.H. Loosli, in Argon 39: A Tool to Investigate Ocean Water Circulation and Mixing, eds. by P.J. Fritz, C.H. Fontes. Handbook of Environmental Isotope Geochemistry, vol 3 (Elsevier, Amsterdam, 1989), p. 387

    Google Scholar 

  80. P. Collon et al., Development of an AMS method to study oceanic circulation characteristics using cosmogenic 39Ar. Nucl. Instrum. Methods. Phys. Res. B 223–224, 428 (2004)

    Article  Google Scholar 

  81. P. Collon et al., Reducing potassium contamination for AMS detection of 39Ar with an electron-cyclotron-resonance ion source. Nucl. Instrum. Methods. Phys. Res. B 283, 77 (2012)

    Article  ADS  Google Scholar 

  82. J.-C. Gascard, G. Raisbeck, S. Sequeira, F. Yiou, K.A. Mork, The Norwegian Atlantic current in the Lofoten basin inferred from hydrological and tracerdata (129I) and its interaction with the Norwegian coastal current. Geophys. Res. Lett. 31, L01308 (2004)

    ADS  Google Scholar 

  83. L. Wacker, L.K. Fifield, S.G. Tims, Developments in AMS of 99Tc. Nucl. Instrum. Methods. Phys. Res. B 223–224, 185 (2004)

    Article  Google Scholar 

  84. M.J. Keith-Roach, J.P. Day, L.K. Fifield, F.R. Livens, Measurement of 237Np in environmental water samples by accelerator mass spectrometry. Analyst 126, 58 (2001)

    Article  ADS  Google Scholar 

  85. S.R. Winkler, P. Steier, J. Carilli, Bomb fall-out 236U as a global oceanic tracer using an annually resolved coral core. Earth Planet. Sci. Lett. 359–360, 124 (2012)

    Article  Google Scholar 

  86. J. Gould et al., Argo profiling floats bring new era of in situ ocean observations. Eos Trans. AGU 85, 185 (2004)

    Article  ADS  Google Scholar 

  87. D. Roemmich et al., Unabated planetary warming and its ocean structure since 2006. Nat. Clim. Chang. 5, 240 (2015)

    Article  ADS  Google Scholar 

  88. S. Wijffels et al., Ocean temperatures chronicle the ongoing warming of Earth. Nat. Clim. Chang. 6, 116 (2016)

    Article  ADS  Google Scholar 

  89. E. Hodge et al., Using the 14C bomb pulse to date young spaleothems. Radiocarbon 53(2), 345 (2011)

    Article  Google Scholar 

  90. J.D.H. Wischusen, L.K. Fifield, R.G. Cresswell, Hydrology of Palm Valley, central Australia; a Pleistocene flora refuge? J. Hydrol. 293, 20 (2004)

    Article  ADS  Google Scholar 

  91. J. Fabryka-Martin, H. Bentley, D. Elmore, P.L. Airey, Natural iodine-129 as an environmental tracer. Geochim. Cosmochim. Acta 49, 337 (1985)

    Article  ADS  Google Scholar 

  92. A.J. Love, A.L. Herczeg, L. Sampson, R.G. Cresswell, L.K. Fifield, Sources of chloride and implications for 36Cl dating of old groundwater, southwestern Great Artesian Basin. Water Resour. Res. 36(6), 1561 (2000)

    Article  ADS  Google Scholar 

  93. P. Collon et al., 81Kr in the Great Artesian Basin, Australia: a new method for dating very old groundwater. Earth Planet. Sci. Lett. 182, 103 (2000)

    Article  ADS  Google Scholar 

  94. N.C. Sturchio et al., One million year old groundwater in the Sahara revealed by krypton-81 and chlorine-36. Geophys. Res. Lett. 31, L5503 (2004)

    Article  ADS  Google Scholar 

  95. F. Ritterbusch et al., Groundwater dating with Atom Trap Trace Analysis of 39Ar. Geophys. Res. Lett. 41, 6758 (2014)

    Article  ADS  Google Scholar 

  96. W. Jiang et al., An atom counter for measuring 81Kr and 85Kr in environmental samples. Cosmochim. Geochim. Acta 91, 1 (2012)

    Article  ADS  Google Scholar 

  97. W. Aeschbach-Hertig, Radiokrypton dating finally takes off. Proc. Natl. Acad. Sci. 111, 6857 (2014)

    Article  ADS  Google Scholar 

  98. C. Buizert et al., Radiometric 81Kr dating identifies 120,000-year-old ice at Taylor Glacier, Antarctica. Proc. Natl. Acad. Sci. 111, 6876 (2014)

    Article  ADS  Google Scholar 

  99. C. Renfrew, Archaeology introduction. Radiocarbon 51(1), 121 (2009)

    Article  Google Scholar 

  100. C. Bronk Ramsey, Bayesian analysis of radiocarbon dates. Radiocarbon 51(1), 337 (2009)

    Article  Google Scholar 

  101. C. Bronk Ramsey et al., Radiocarbon-based chronology for dynastic Egypt. Science 328, 1554 (2010)

    Article  ADS  Google Scholar 

  102. H.J. Bruins, J. van der Plicht, J.A. MacGillivray, The Minoan Santorini eruption and tsunami deposits in Palaikastro. Radiocarbon 51, 397 (2004)

    Article  Google Scholar 

  103. S.W. Manning et al., Dating the Thera (Santorini) eruption: archaeological and scientific evidence supporting a high chronology. Antiquity 88, 1164 (2014)

    Article  Google Scholar 

  104. W. Kutschera, Dating of the Thera/Santorini volcanic eruption, Tagungen des Landesmuseums für Vorgeschichte Halle. Band 9, 59 (2013)

    Google Scholar 

  105. W. Kutschera et al., The chronology of Tell el-Dab’a: a crucial meeting point of 14C dating, archaeology and Egyptology in the 2nd millennium BC. Radiocarbon 54, 407 (2012)

    Article  Google Scholar 

  106. M. Bietak, in Antagonisms in Historical and Radiocarbon Chronology, ed. by A.J. Shortland, C. Bronk Ramsey, Radiocarbon and the Chronology of Ancient Egypt, Chapter 8, (Oxbow Books, Oxford, 2013), pp. 76–109

    Google Scholar 

  107. N. Moeller, G. Marouard, Discussion of Late Middle Kingdom and Early Second Intermediate Period history and chronology in relation to the Kayan sealings from Tell Edfu. Egypt Levant 21, 87 (2011)

    Article  Google Scholar 

  108. F. Höflmayer et al., New evidence for Middle Bronze Age chronology and synchronisms in the Levant: radiocarbon dates from Tell el-Burak, Tell el-Dab’a, and Tel Ifshar compared. Bull. Am. School Orient. Res. 375, 53 (2016)

    Article  Google Scholar 

  109. K.L. Spalding, R.D. Bhardwaj, B.A. Buchholz, H. Druid, J. Frisén, Retrospective birth dating of cells in humans. Cell 122, 133 (2005)

    Article  Google Scholar 

  110. D. Grimm, The mushroom cloud’s silver lining. Science 321, 1434 (2008)

    Article  Google Scholar 

  111. E.M. Wild et al., 14C dating with the bomb peak: an application to forensic medicine. Nucl. Instrum. Methods. Phys. Res. B 172, 944 (2000)

    Article  ADS  Google Scholar 

  112. K.L. Spalding, B.A. Buchholz, L.-E. Bergman, H. Druid, J. Frisén, Age written in teeth by nuclear tests. Nature 437, 333 (2005)

    Article  ADS  Google Scholar 

  113. N. Lynnerup, H. Kjeldsen, S. Heegaard, C. Jacobsen, J. Heinemeier, Radiocarbon dating of the human eye lens crystallines reveal proteins without carbon turnover throughout life. PLoS One 3(1), e1529 (2008)

    Article  ADS  Google Scholar 

  114. R.D. Bhardwaj et al., Neocortical neurogenesis in humans is restricted to development. Proc. Natl. Acad. Sci. 103, 12564 (2006)

    Article  ADS  Google Scholar 

  115. K.L. Spalding et al., Dynamics of hippocampal neurogenesis in adult humans. Cell 153, 1219 (2013)

    Article  Google Scholar 

  116. O. Bergmann et al., The age of olfactory bulb neurons in humans. Neuron 74, 634 (2012)

    Article  Google Scholar 

  117. H.B. Huttner et al., The age and genomic integrity of neurons after cortical stroke in humans. Nat Neurosci. 17, 801 (2014)

    Article  Google Scholar 

  118. K.L. Spalding et al., Dynamics of fat cell turnover in humans. Nature 453, 783 (2008)

    Article  ADS  Google Scholar 

  119. M.T. Hyvönen, K.L. Spalding, Maintenance of white adipose tissue in man. Int. J. Biochem. Cell Biol. 56, 123 (2014)

    Article  Google Scholar 

  120. O. Bergmann et al., Dynamics of cell generation and turnover in the human heart. Cell 161, 1566 (2015)

    Article  Google Scholar 

  121. L.L. Hamady, L.J. Natanson, G.B. Skomal, S.R. Thorrold, Vertebral bomb radiocarbon suggests extreme longevity in white sharks. PLoS One 9(1), e84006 (2014)

    Article  ADS  Google Scholar 

  122. J. Nielsen et al., Eye lens radiocarbon reveals centuries of longevity in the Greenland shark (Somniosus microcephalus). Science 353, 702 (2016)

    Article  ADS  Google Scholar 

  123. L. Caforio et al., Discovering forgeries of modern art by the 14C bomb peak. Eur. Phys. J. Plus 129, 6 (2014). https://doi.org/10.1140/epjp/i2014-14006-6

    Article  Google Scholar 

  124. T.E. Cerling et al., Radiocarbon dating of seized ivory confirms rapid decline in African elephant populations and provides insight into illegal trade. Proc. Natl. Acad. Sci. 113, 13330 (2016)

    Article  ADS  Google Scholar 

  125. S.K. Wasser et al., Genetic assignment of large seizures of elephant ivory reveals Africas major poaching hotspots. Science 349, 84 (2015)

    Article  ADS  Google Scholar 

  126. K.W. Turteltaub et al., Accelerator mass spectrometry in biomedical dosimetry: relationship between low-level exposure and covalent binding of heterocyclic amine-carcinogens to DNA. Proc. Natl. Acad. Sci. 87, 5288 (1990)

    Article  ADS  Google Scholar 

  127. R.C. Garner et al., Comparative biotransformation studies of MeIQx and PhIP in animal models and humans. Cancer Lett. 143, 161 (1999)

    Article  Google Scholar 

  128. G. Lappin, R.C. Garner, Big physics, small doses: the use of AMS and PET in human microdosing. Nat. Rev. Drug Disc. 2(3), 233 (2003)

    Article  Google Scholar 

  129. J.S. Vogel, N.M. Palmblad, T. Ognibene, M.M. Kabir, B.A. Buchholz, G. Bench, Biochemical paths in humans and cells: frontiers of AMS bioanalysis. Nucl. Instrum. Methods. Phys. Res. B 259, 754 (2007)

    Article  ADS  Google Scholar 

  130. T. Schulze-König, S.R. Dueker, J. Giacomo, M. Suter, J.S. Vogel, H.-A. Synal, BioMICADAS: compact next generation AMS system for pharmaceutical science. Nucl. Instrum. Methods. Phys. Res. B 268, 891 (2010)

    Article  ADS  Google Scholar 

  131. R.M.J. Ings, Welcome to ‘microdosing’. Bioanalysis 2(3), 371 (2010)

    Article  Google Scholar 

  132. R.C. Garner, Practical experience of using human microdosing with AMS analysis to obtain early human drug metabolism and PK data. Bioanalysis 2(3), 429 (2010)

    Article  Google Scholar 

  133. R.E.M. Hedges, R.A. Housley, C.R. Bronk, G.J. van Klinken, Radiocarbon dates from the Oxford AMS system: Archaeometry datelist 15. Archaeometry 34(2), 337 (1992)

    Article  Google Scholar 

  134. G. Bonani, S.D. Ivy, I. Hajdas, T.R. Niklaus, M. Suter, AMS 14C age determination of tissue, bone and grass samples from the Ötztal Iceman. Radiocarbon 36(2), 247 (1994)

    Article  Google Scholar 

  135. W. Müller, H. Fricke, A.N. Halliday, M.T. McCulloch, J.-A. Wartho, Origin and migration of the Alpine Iceman. Science 302, 862 (2003)

    Article  ADS  Google Scholar 

  136. K. Nicolussi, G. Patzelt, Discovery of Early-Holocene wood and peat on the forefield of the Pasterze Glacier, Eastern Alps, Austria. The Holocene 10(2), 191 (2000)

    Article  ADS  Google Scholar 

  137. A. Hormes, B.U. Müller, C. Schlüchter, The Alps with little ice: evidence for eight Holocene phases of reduced glacier extend in the Central Swiss Alps. The Holocene 11(3), 255 (2001)

    Article  ADS  Google Scholar 

  138. M. Magny, J.N. Haas, A major widespread climatic change around 5300 cal. yr BP at the time of the Alpine Iceman. J. Quat. Sci. 19(5), 423 (2004)

    Article  Google Scholar 

  139. C. Schlüchter, U. Joerin, Die Alpen ohne Gletscher (in German). Die Alpen 6, 34 (2004)

    Google Scholar 

  140. H. Holzhauser, M. Magny, H.J. Zumbühl, Glacier and lake-level variations in west-central Europe over the last 3500 years. The Holocene 15(6), 789 (2005)

    Article  ADS  Google Scholar 

  141. K. Nicolussi, M. Kaufmann, G. Patzelt, J. van der Plicht, A. Thurner, Holocene tree-line variability in the Kauner Valley, Central Eastern Alps, indicated by dendrochronological analysis of living trees and subfossil logs. Veget. Hist. Archaeobot. 14, 221 (2005)

    Article  Google Scholar 

  142. U.E. Joerin, T.F. Stocker, C. Schlüchter, Multicentury glacier fluctuations in the Swiss Alps during the Holocene. The Holocene 16(5), 697 (2006)

    Article  ADS  Google Scholar 

  143. M. Grosjean, P.J. Suter, M. Trachsel, H. Wanner, Ice-borne prehistoric finds in the Swiss Alps reflect Holocene glacier fluctuations. J. Quat. Sci. 22(3), 203 (2007)

    Article  Google Scholar 

  144. U.E. Joerin, K. Nicolussi, A. Fischer, T.F. Stocker, C. Schlü chter, Holocene optimum events inferred from subglacial sediments at Tschierva Glacier, Eastern Swiss Alps. Quat. Sci. Rev. 27, 337 (2008)

    Article  ADS  Google Scholar 

  145. K. Nicolussi, C. Schlüchter, The 8.2 ka event—calendar-dated glacier response in the Alps. Geology 40(9), 819 (2012)

    Article  ADS  Google Scholar 

  146. M. Le Roy et al., Calendar-dated glacier variations in the western European Alps during the Neoglacial: the Mer de Glace record, Mont Blanc massif. Quat. Sci. Rev. 108, 1 (2015)

    Article  ADS  Google Scholar 

  147. W. Kutschera, G. Patzelt, P. Steier, E.M. Maria Wild, The Tyrolean Iceman and his glacial environment during the Holocene. Radiocarbon 59(2), 395 (2017)

    Article  Google Scholar 

  148. B.M. Goehring et al., The Rhone Glacier was smaller than today for most of the Holocene. Geology 39(7), 679 (2011)

    Article  ADS  Google Scholar 

  149. I. Schimmelpfennig, J.M. Schaefer, N. Akçar, S. Ivy-Ochs, R.C. Finkel, C. Schlüchter, Holocene glacier culminations in the Western Alps and their hemispheric relevance. Geology 40(10), 891 (2012)

    Article  ADS  Google Scholar 

  150. I. Schimmelpfenning et al., A chronology of Holocene and Little Ice Age glacier culminations of the Steingletscher, Central Alps, Switzerland, based on high-sensitivity beryllium-10 moraine dating. Earth Planet. Sci. Lett. 393, 220 (2014)

    Article  ADS  Google Scholar 

  151. C. Wirsig, J. Zasadni, S. Ivy-Ochs, M. Christl, F. Kober, C. Schlüchter, A deglaciation model of the Oberhasli, Switzerland. J. Quat. Sci. 31(1), 46 (2016)

    Article  Google Scholar 

  152. J.M. Schaefer et al., High-frequency Holocene glacier fluctuations in New Zealand differ from the northern signature. Science 324, 622 (2009)

    Article  ADS  Google Scholar 

  153. A.E. Putnam et al., Regional climate control of glaciers in New Zealand and Europe during the pre-industrial Holocene. Nat. Geosci. 5, 627 (2012)

    Article  ADS  Google Scholar 

  154. J.C. Gosse, F.M. Phillips, Terrestrial in situ cosmogenic nuclides: theory and application. Quat. Sci. Rev. 20, 1475 (2001)

    Article  ADS  Google Scholar 

  155. D.W. Burbank et al., Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature 379, 505 (1996)

    Article  ADS  Google Scholar 

  156. M.K. Pavicevic et al., Erosion rate study at the Allchar deposit (Macedonia) based on radioactive and stable cosmogenic nuclides (26Al, 36Cl, 3He, and 21Ne). Geochem. Geophys. Geosyst. 17, 410 (2016)

    Article  ADS  Google Scholar 

  157. F. Steinhilber, J. Beer, C. Fröhlich, Total solar irradiance during the Holocene. Geophys. Res. Lett. 36, L19704 (2009)

    Article  ADS  Google Scholar 

  158. J.A. Abreu, J. Beer, F. Steinhilber, M. Christl, P.W. Kubik, 10Be in ice cores and 14C in tree rings: separation of production and climatic effects. Space Sci. Rev. 176(1), 343 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

This work would not have been possible without the countless collaborations and discussions the author enjoyed over the years with colleagues and friends around the world.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Kutschera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kutschera, W. (2018). Applications of 14C, the Most Versatile Radionuclide to Explore Our World. In: Scheidenberger, C., Pfützner, M. (eds) The Euroschool on Exotic Beams - Vol. 5. Lecture Notes in Physics, vol 948. Springer, Cham. https://doi.org/10.1007/978-3-319-74878-8_1

Download citation

Publish with us

Policies and ethics