Skip to main content

Current Noise of Chopper Amplifiers

  • Chapter
  • First Online:
Low Power Active Electrode ICs for Wearable EEG Acquisition

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 1226 Accesses

Abstract

This chapter investigates the root cause of 1/f 2 noise of chopper amplifiers through a theoretical analysis and measurements of several chopper IAs. It is well known that the charge injection and clock feedthrough associated with the MOSFETs of the input chopper give rise to significant input current and current noise, which may then be a significant contributor to the amplifier’s total input-referred voltage noise. Furthermore, the chopper noise has a white power spectral density, its magnitude is roughly proportional to the chopping frequency. Design guidelines are proposed to reduce the chopper noise. A further proposal is the use of a clock-bootstrapped chopper, which exhibits less noise than a traditional chopper.

This chapter is derived from a journal publication of the authors: J. Xu, Q. Fan, et al., “Measurement and Analysis of Current Noise in Chopper Amplifiers” IEEE J. Solid-State Circuit, vol.48, no.7, pp. 1575–1584, July. 2013.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.C. Enz, G.C. Temes, Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization. Proc. IEEE 84, 1584–1614 (1996)

    Article  Google Scholar 

  2. K.A.A. Makinwa, M.A.P. Pertijs, J.C. van der Meer, J.H. Huijsing, Smart sensor design: the art of compensation and cancellation. Proc of ESSCIRC, pp. 76–82 (2007)

    Google Scholar 

  3. R.F. Yazicioglu, P. Merken, R. Puers, et al., A 60μW 60nV/√Hz readout front-end for portable biopotential acquisition systems. IEEE J. Solid State Circuits 42(5), 1100–1110 (2007)

    Article  Google Scholar 

  4. G. Ge, C. Zhang, G. Hoogzaad, K.A.A. Makinwa, A Single-Trim CMOS Bandgap Reference with an inaccuracy of ±0.15% from −40 to 125°C. IEEE J. Solid State Circuits 46(11), 2693–2701 (2011)

    Article  Google Scholar 

  5. A. Bakker, K. Thiele, J.H. Huijsing, A CMOS nested-chopper instrumentation amplifier with 100-nV offset. IEEE J. Solid State Circuits 35(12), 1877–1883 (2000)

    Article  Google Scholar 

  6. Q. Fan, J.H. Huijsing, K.A.A.Makinwa, Input characteristics of a chopped multi-path current feedback instrumentation amplifier, Proc of 4th IEEE IWASI, (2011)

    Google Scholar 

  7. J. Caldwell, Intrinsic noise sources in chopper amplifiers, [online] available: http://e2e.ti.com/cfs-file.ashx/__key/telligent-evolution-components-attachments/00-14-01-00-00-70-21-03/Chopper-Noise.pdf

  8. D. Drung, J.-H. Storm, Ultra low-noise chopper amplifier with low input charge injection. IEEE Trans. Instrum. Meas. 60(7), 2347–2352 (2011)

    Article  Google Scholar 

  9. AN3642, Choosing a low-noise amplifier, [online] available: http://pdfserv.maximintegrated.com/en/an/AN3642.pdf

  10. K. Blake, Op amp precision design: random noise, Application Note AN1228, Microchip, [online] available: http://ww1.microchip.com/downloads/en/AppNotes/01228a.pdf

  11. OPA333 Datasheet, TI, [online] available: http://www.ti.com/lit/ds/symlink/opa333.pdf

  12. ADA4051 Datasheet, [online] available: http://www.analog.com/static/imported-files/data_sheets/ADA4051-1_4051-2.pdf

  13. ISL28314 Datasheet, Intersil, [online] available: http://www.intersil.com/content/dam/Intersil/documents/fn69/fn6957.pdf

  14. J. Xu, Q. Fan, J.H. Huijsing, C. Van Hoof, R.F. Yazicioglu, K.A.A. Makinwa, Measurement and analysis of input current noise in chopper amplifiers. Proc of ESSCIRC, 81–84 (2012)

    Google Scholar 

  15. J.-H. Shieh, M. Patil, B.J. Sheu, Measurement and analysis of charge injection in MOS analog switches. IEEE J. Solid State Circuits 22(2), 277–281 (1987)

    Article  Google Scholar 

  16. R. Burt, J. Zhang, A micropower chopper-stabilized operational amplifier using a SC notch filter with synchronous integration inside the continuous-time signal path. IEEE J. Solid State Circuits 41(12), 2729–2736 (2006)

    Article  Google Scholar 

  17. A.T.K. Tang, A 3 μV-offset operational amplifier with 20nV/rt(Hz) input noise PSD at DC employing both chopping and autozeroing, Digest of ISSCC, pp. 362–387 (2002)

    Google Scholar 

  18. K.H. Lundberg, Noise sources in bulk CMOS. [online] available: http://web.mit.edu/klund/www/papers/UNP_noise.pdf

  19. R. Sarpeshkar, T. Delbruck, C.A. Mead, White noise in MOS transistors and resistors. IEEE Circuits Devices Magazine 9(6), 23–29 (1993)

    Article  Google Scholar 

  20. J.F. Witte, K.A.A. Makinwa, J.H. Huijsing, The effect of non-idealities in CMOS chopper amplifiers. Proc of ProRISC, 616–619 (2004)

    Google Scholar 

  21. J.F. Witte, K.A.A. Makinwa, J.H. Huijsing, A CMOS chopper offset-stabilized opamp. IEEE J. Solid-State Circuits 42(7), 1529–1535 (2007)

    Article  Google Scholar 

  22. Switched-Capacitor Network Noise, [online] available: http://inst.eecs.berkeley.edu/~ee247/fa06/lectures/L10_f06_3.pdf

  23. D. LaFontaine, Making accurate voltage noise and current noise measurements on operational amplifiers down to 0.1 Hz, Application Note AN1560, Intersil, (2011)

    Google Scholar 

  24. S. Mitra, J. Xu, A. Matsumoto, K.A.A. Makinwa, C. Van Hoof, R.F. Yazicioglu, A 700μW 8-channel EEG/contact-impedance acquisition system for dry-electrodes. Digest of Symp. VLSI Circuits, pp. 68–69 (2012)

    Google Scholar 

  25. Q. Fan, J.H. Huijsing, K.A.A. Makinwa, A 78μW ±30V input common-mode range and 160dB CMRR capacitively-coupled chopper instrumentation amplifier with 5μV offset for high-side current-sensing applications. Digest of ISSCC, pp. 374–376 (2012)

    Google Scholar 

  26. Y. Kusuda, A 5.9nV/√Hz chopper operational amplifier with 0.78μV maximum offset and 28.3nV/°C offset drift. Digest of ISSCC, pp. 242–244 (2011)

    Google Scholar 

  27. J. Xu, B. Büsze, H. Kim, K.A.A. Makinwa, C. Van Hoof, R.F. Yazicioglu, A 60nV/√Hz 15-channel digital active electrode system for portable biopotential monitoring. Digest of ISSCC, 424–425 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, J., Yazicioglu, R.F., Van Hoof, C., Makinwa, K. (2018). Current Noise of Chopper Amplifiers. In: Low Power Active Electrode ICs for Wearable EEG Acquisition. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-74863-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74863-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74862-7

  • Online ISBN: 978-3-319-74863-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics