An Eight-Channel Active Electrode System

  • Jiawei Xu
  • Refet Firat Yazicioglu
  • Chris Van Hoof
  • Kofi Makinwa
Chapter
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

To fulfill the needs of digitization and continuous EEG recording, this chapter presents a complete eight-channel AE system, including both active electrodes and a back-end analog signal processing unit. Furthermore, the system can also measure electrode-tissue impedance (ETI), i.e., the complex impedance between an electrode and skin. ETI measurement extends an AE system’s functionality by enabling the remote assessment of electrode status and by recording ETI-related motion artifacts. The complete eight-channel AE system consists of nine AEs and one back-end (BE) analog signal processor (ASP). The new AEs, based on a non-inverting chopper IA architecture, provide better performance on input impedance and noise. The BE ASP post-processes and digitizes the AEs’ analog outputs, such that the system can be connected to a generic microcontroller through a serial-to-parallel interface (SPI). At the system level, a common-mode feedforward (CMFF) technique improves the CMRR of a pair of AEs by 25 dB.

Keywords

Back end CMFF Electrode-tissue impedance PWM PGA 

References

  1. 1.
    S. Kim, R.F. Yazicioglu, T. Torfs, B. Dilpreet, P. Julien, C. Van Hoof, A 2.4μA continuous-time electrode-skin impedance measurement circuit for motion artifact monitoring in ECG acquisition systems, Symp. VLSI Circuits Digest, (June 2010), pp. 219–220Google Scholar
  2. 2.
    B.B. Winter, J.G. Webster, Driven-Right-Leg circuit design. IEEE Trans. Biomed. Eng. 30(1), 62–66 (1983)CrossRefGoogle Scholar
  3. 3.
    M.A. Haberman, E.M. Spinelli, A multichannel EEG acquisition scheme based on single ended amplifiers and digital DRL. IEEE Trans. Biomed. Circuits Syst. 6(6), 614–618 (2012)CrossRefGoogle Scholar
  4. 4.
    A.C. Metting-van Rijn, A. Peper, C.A. Grimbergen, High-quality recording of bioelectric events. Part 2. Low-noise, low-power multichannel amplifier design. Med. Biol. Eng. Comput. 29(4), 433–440 (1991)CrossRefGoogle Scholar
  5. 5.
    J. Lime, S. Silva, A. Cordeiro, M. Verleysen, A CMOS/SOI single-input PWM discriminator for low-voltage body-implanted applications. VLSI Design 15, 469–476 (2002)CrossRefGoogle Scholar
  6. 6.
    J. Xu, R.F. Yazicioglu, P. Harpe, K.A.A. Makinwa, C. Van Hoof, A 160μW 8-channel active electrode system for EEG monitoring, Digest of ISSCC, (Feb. 2011), pp. 300–302Google Scholar
  7. 7.
    R. Wu, K.A.A. Makinwa, J.H. Huijsing, A chopper current-feedback instrumentation amplifier with a 1mHz 1/f noise corner and an AC-coupled ripple reduction loop. IEEE J. Solid State Circuits 44(12), 3232–3243 (2009)CrossRefGoogle Scholar
  8. 8.
    J. Xu, Q. Fan, J.H. Huijsing, C. Van Hoof, R.F. Yazicioglu, K.A.A. Makinwa, Measurement and analysis of current noise in chopper amplifiers. IEEE J. Solid-State Circuits 48(7), 1575–1584 (2013)CrossRefGoogle Scholar
  9. 9.
    D. Drung, J.-H. Storm, Ultralow-noise chopper amplifier with low input charge injection. IEEE Trans. Instrum. Meas. 60(7), 2347–2352 (2011)CrossRefGoogle Scholar
  10. 10.
    X. Zou et al., A 1V 22μW 32-channel implantable EEG recording IC, Digest of ISSCC, (Feb. 2010), pp. 126–127Google Scholar
  11. 11.
    N. Verma, A. Shoeb, A.J. Bohorquez, et al., A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system. IEEE J. Solid State Circuits 45(4), 804–816 (2010)CrossRefGoogle Scholar
  12. 12.
    R.F. Yazicioglu, P. Merken, R. Puers, et al., A 60μW 60nV/√Hz readout front-end for portable biopotential acquisition systems. IEEE J. Solid State Circuits 42(5), 1100–1110 (2007)CrossRefGoogle Scholar
  13. 13.
    T. Kugelstadt, Active filter design techniques, in Op Amps for Everyone: Design Reference, (Newnes, Boston, 2001), pp. 271–281Google Scholar
  14. 14.
    N. Van Helleputte, S. Kim, H. Kim, J.P. Kim, C. Van Hoof, R.F. Yazicioglu, A 160μW biopotential acquisition IC with fully integrated IA and motion artifact suppression. IEEE Trans. Biomed Circuits Syst. 6(6), 552–561 (2012)CrossRefGoogle Scholar
  15. 15.
    R.F. Yazicioglu, P. Merken, R. Puers, C. Van Hoof, A 200μW eight-channel EEG acquisition ASIC for ambulatory EEG systems. IEEE J. Solid State Circuits 43(12), 3025–3038 (2008)CrossRefGoogle Scholar
  16. 16.
    S. Mitra, J. Xu et al., A700μW 8-Channel EEG/Contact-impedance Acquisition System for Dry-electrodes, Symp. VLSI Circuits Digest, (June 2012), pp. 68–69Google Scholar
  17. 17.
  18. 18.
    T. Degen, H. Jackel, A pseudo differential amplifier for bioelectric events with DC-offset compensation using two-wired amplifying electrodes. IEEE Trans. Biomed. Eng. 53(2), 300–310 (2006)CrossRefGoogle Scholar
  19. 19.
    M. Guermandi, R. Cardu et al., Active electrode IC combining EEG, electrical impedance tomography, continuous contact impedance measurement and power supply on a single wire, Proc of ESSCIRC, (Sept. 2011), pp. 335–338Google Scholar
  20. 20.
    Y. Chi, G. Cauwenberghs, Micropower non-contact EEG electrode with active common-mode noise suppression and input capacitance cancellation, IEEE EMBS, (Sept. 2009), pp. 4218–4222Google Scholar
  21. 21.
    MSP430F161, Texas Instruments, [online] available: http://www.ti.com/product/msp430f1611
  22. 22.
    nRF24L01+, Nordic Semi [online] available: http://www.nordicsemi.com/kor/Products/2.4GHz-RF/nRF24L01P

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Jiawei Xu
    • 1
  • Refet Firat Yazicioglu
    • 2
  • Chris Van Hoof
    • 3
  • Kofi Makinwa
    • 4
  1. 1.Holst Centre / imecEindhovenThe Netherlands
  2. 2.Galvani BioelectronicsStevenageUK
  3. 3.ESAT-MICASKU Leuven / imecLeuvenBelgium
  4. 4.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations