Skip to main content

Mimicking Physiological Oxygen in Cell Cultures

  • 1777 Accesses

Part of the Learning Materials in Biosciences book series (LMB)

Abstract

This chapter will provide a concise overview of the history of mammalian in vitro cell culture from its first descriptions through to the modern era. A specific focus will be adopted to understand when the importance of oxygen control emerged within the field, and we will discuss some of the earliest examples. A description of the common and state-of-the-art systems designed to provide an approximation of physiological normoxia will follow before finally describing its application in the emerging field of stem cell biology, specifically pluripotent stem cells and bone marrow-derived mesenchymal stem cells.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-74854-2_8
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-74854-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 8.1

References

  1. Bigot N, Mouche A, Preti M, Loisel S, Renoud M-L, Le Guével R, et al. Hypoxia differentially modulates the genomic stability of clinical-grade ADSCs and BM-MSCs in long-term culture. Stem Cells. 2015;33(12):3608–20.

    CAS  CrossRef  Google Scholar 

  2. Brosemer RW, Rutter WJ. The effect of oxygen tension on the growth and metabolism of a mammalian cell. Exp Cell Res. 1961;25:101–13.

    CAS  CrossRef  PubMed  Google Scholar 

  3. Caplan AI. Mesenchymal stem cells. J Orthop Res Off Publ Orthop Res Soc. 1991;9(5):641–50.

    CAS  CrossRef  Google Scholar 

  4. Carrel A. On the permanent LIFE of tissues outside of the organism. J Exp Med. 1912;15(5):516–28.

    CAS  CrossRef  PubMed  Google Scholar 

  5. Cooper PD, Burt AM, Wilson JN. Critical effect of oxygen tension on rate of growth of animal cells in continuous suspended culture. Nature. 1958;182(4648):1508–9.

    CAS  CrossRef  Google Scholar 

  6. Eagle H. The specific amino acid requirements of a mammalian cell (strain L) in tissue culture. J Biol Chem. 1955;214(2):839–52.

    CAS  Google Scholar 

  7. Earle WR. Production of malignancy in vitro. I. Method of cleaning glassware. JNCI J Natl Cancer Inst. 1943;4(2):131–3.

    CAS  Google Scholar 

  8. Earle WR. Production of malignancy in vitro. II. Photomicrographic equipment. JNCI J Natl Cancer Inst. 1943;4(2):135–45.

    CAS  Google Scholar 

  9. Earle WR, Crisp LR. Production of malignancy in vitro. III. Microcinematographic equipment. JNCI J Natl Cancer Inst. 1943;4(2):147–64.

    CAS  Google Scholar 

  10. Earle WR, Schilling EL, Stark TH, Straus NP, Brown MF, Shelton E. Production of malignancy in vitro. IV. The mouse fibroblast cultures and changes seen in the living cells. JNCI J Natl Cancer Inst. 1943;4(2):165–212.

    CAS  Google Scholar 

  11. Earle WR, Nettleship A, Schilling EL, Stark TH, Straus NR, Brown MF, et al. Production of malignancy in vitro. V. Results of injections of cultures into mice. JNCI J Natl Cancer Inst. 1943;4(2):213–27.

    CAS  Google Scholar 

  12. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292(5819):154–6.

    CAS  CrossRef  PubMed  Google Scholar 

  13. Ezashi T, Das P, Roberts RM. Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci U S A. 2005;102(13):4783–8.

    CAS  CrossRef  PubMed  Google Scholar 

  14. Fischer A, Astrup T. Growth of animal tissue cells in artificial media. Proc Soc Exp Biol Med Soc Exp Biol Med N Y N. 1948;67(1):40–6.

    CAS  CrossRef  Google Scholar 

  15. Forsyth NR, Evans AP, Shay JW, Wright WE. Developmental differences in the immortalization of lung fibroblasts by telomerase. Aging Cell. 2003;2(5):235–43.

    CAS  CrossRef  PubMed  Google Scholar 

  16. Forsyth NR, Musio A, Vezzoni P, Simpson AHRW, Noble BS, McWhir J. Physiologic oxygen enhances human embryonic stem cell clonal recovery and reduces chromosomal abnormalities. Cloning Stem Cells. 2006;8(1):16–23.

    CAS  CrossRef  PubMed  Google Scholar 

  17. Forsyth NR, Kay A, Hampson K, Downing A, Talbot R, McWhir J. Transcriptome alterations due to physiological normoxic (2% O2) culture of human embryonic stem cells. Regen Med. 2008;3(6):817–33.

    CAS  CrossRef  PubMed  Google Scholar 

  18. Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol. 1966;16(3):381–90.

    CAS  PubMed  Google Scholar 

  19. Ham RG, Puck TT. A regulated incubator controlling CO2 concentration, humidity and temperature for use in animal cell culture. Proc Soc Exp Biol Med Soc Exp Biol Med N Y N. 1962;111:67–71.

    CAS  CrossRef  Google Scholar 

  20. Ham RG. An improved nutrient solution for diploid Chinese hamster and human cell lines. Exp Cell Res. 1963;29:515–26.

    CAS  CrossRef  Google Scholar 

  21. Ham RG. CLONAL GROWTH OF MAMMALIAN CELLS IN A CHEMICALLY DEFINED, SYNTHETIC MEDIUM. Proc Natl Acad Sci U S A. 1965;53:288–93.

    CAS  CrossRef  PubMed  Google Scholar 

  22. Harrison RG, Greenman MJ, Mall FP, Jackson CM. Observations of the living developing nerve fiber. Anat Rec. 1907;1(5):116–28.

    CrossRef  Google Scholar 

  23. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585–621.

    CAS  CrossRef  Google Scholar 

  24. Hayflick L. THE LIMITED IN VITRO LIFETIME OF HUMAN DIPLOID CELL STRAINS. Exp Cell Res. 1965;37:614–36.

    CAS  CrossRef  Google Scholar 

  25. Hayashi I, Sato GH. Replacement of serum by hormones permits growth of cells in a defined medium. Nature. 1976;259(5539):132–4.

    CAS  CrossRef  Google Scholar 

  26. Ivanovic Z. Hypoxia or in situ normoxia: the stem cell paradigm. J Cell Physiol. 2009;219(2):271–5.

    CAS  CrossRef  Google Scholar 

  27. Kay AG, Dale TP, Akram KM, Mohan P, Hampson K, Maffulli N, et al. BMP2 repression and optimized culture conditions promote human bone marrow-derived mesenchymal stem cell isolation. Regen Med. 2015;10(2):109–25.

    CAS  CrossRef  Google Scholar 

  28. Loo DT, Fuquay JI, Rawson CL, Barnes DW. Extended culture of mouse embryo cells without senescence: inhibition by serum. Science. 1987;236(4798):200–2.

    CAS  CrossRef  Google Scholar 

  29. Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL, et al. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol. 2006;24(2):185–7.

    CAS  CrossRef  Google Scholar 

  30. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981;78(12):7634–8.

    CAS  CrossRef  PubMed  Google Scholar 

  31. Nettleship A, Earle WR, Clapp MP, Shelton E. Production of malignancy in vitro. VI. Pathology of tumors produced. JNCI J Natl Cancer Inst. 1943;4(2):229–48.

    CAS  Google Scholar 

  32. Pace DM, Thompson JR, Van Camp WA. Effects of oxygen on growth in several established cell lines. J Natl Cancer Inst. 1962;28:897–909.

    CAS  PubMed  Google Scholar 

  33. Packer L, Fuehr K. Low oxygen concentration extends the lifespan of cultured human diploid cells. Nature. 1977;267(5610):423–5.

    CAS  CrossRef  PubMed  Google Scholar 

  34. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    CAS  CrossRef  Google Scholar 

  35. Rous P, Jones FSA. Method for obtaining suspensions of living cells from the fixed tissues, and for the plating out of individual cells. J Exp Med. 1916;23(4):549–55.

    CAS  CrossRef  PubMed  Google Scholar 

  36. Rueckert RR, Mueller GC. Effect of oxygen tension on HeLa cell growth. Cancer Res. 1960;20:944–9.

    CAS  PubMed  Google Scholar 

  37. Saito H, Hammond AT, Moses RE. The effect of low oxygen tension on the in vitro-replicative life span of human diploid fibroblast cells and their transformed derivatives. Exp Cell Res. 1995;217(2):272–9.

    CAS  CrossRef  PubMed  Google Scholar 

  38. Sanford KK, Earle WR, Likely GD. The growth in vitro of single isolated tissue cells. J Natl Cancer Inst. 1948;9(3):229–46.

    CAS  PubMed  Google Scholar 

  39. Scherer WF, Syverton JT, Gey GO. Studies on the propagation in vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. J Exp Med. 1953;97(5):695–710.

    CAS  CrossRef  PubMed  Google Scholar 

  40. Stamati K, Mudera V, Cheema U. Evolution of oxygen utilization in multicellular organisms and implications for cell signalling in tissue engineering. J Tissue Eng. 2011;2(1):2041731411432365.

    CrossRef  PubMed  Google Scholar 

  41. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    CAS  CrossRef  Google Scholar 

  42. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.

    CAS  CrossRef  PubMed  Google Scholar 

  43. Taylor WG, Richter A, Evans VJ, Sanford KK. Influence of oxygen and pH on plating efficiency and colony development of WI-38 and Vero cells. Exp Cell Res. 1974;86(1):152–6.

    CAS  CrossRef  Google Scholar 

  44. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.

    CAS  CrossRef  Google Scholar 

  45. Trounson A, Thakar RG, Lomax G, Gibbons D. Clinical trials for stem cell therapies. BMC Med. 2011;9:52.

    CrossRef  PubMed  Google Scholar 

  46. Wenger RH, Kurtcuoglu V, Scholz CC, Marti HH, Hoogewijs D. Frequently asked questions in hypoxia research. Hypoxia (Auckl). 2015;3:35–43.

    CrossRef  Google Scholar 

  47. Wright WE, Shay JW. Inexpensive low-oxygen incubators. Nat Protoc. 2006;1(4):2088–90.

    CAS  CrossRef  Google Scholar 

  48. Yoshida Y, Takahashi K, Okita K, Ichisaka T, Yamanaka S. Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell. 2009;5(3):237–41.

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas R. Forsyth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Forsyth, N.R. et al. (2018). Mimicking Physiological Oxygen in Cell Cultures. In: Kasper, C., Charwat, V., Lavrentieva, A. (eds) Cell Culture Technology. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-319-74854-2_8

Download citation