Skip to main content

Cell Culture Bioprocess Technology: Biologics and Beyond

Part of the Learning Materials in Biosciences book series (LMB)

Abstract

Scientists have been growing vertebrate cells in culture for over a century. Initially, this cell culture involved placing tissues isolated from animals in a nutrient solution for observation. Eventually, some cells grew out from the tissue explant and began to form cell layers. Over the years, scientists developed a better understanding of the nutritional requirements of cells, established methods to isolate them from tissues and to propagate them, and acquired the ability to use them as tools for conducting research to develop new knowledge on cells and organisms. Ultimately, we learned ways to use them to produce vaccines and medicines.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-74854-2_1
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-74854-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.1
Fig. 1.2
Fig. 1.3
Fig. 1.4
Fig. 1.5

References

  1. Aden DP, Fogel A, Plotkin S, Damjanov I, Knowles BB. Controlled synthesis of HBsAg in a differentiated human liver carcinoma-derived cell line. Nature. 1979;282:615–6. https://doi.org/10.1038/282615a0.

    CAS  CrossRef  PubMed  Google Scholar 

  2. Amit M, Itskovitz-Eldor J. Feeder-free culture of human embryonic stem cells. Methods Enzymol. 2006;420:37–49. https://doi.org/10.1016/S0076-6879(06)20003-X.

    CAS  CrossRef  PubMed  Google Scholar 

  3. Atala A, Kasper FK, Mikos AG. Engineering complex tissues. Sci Transl Med. 2012;4(160):160rv12.

    CrossRef  PubMed  Google Scholar 

  4. Baicus A. History of polio vaccination. World J Virol. 2012;1(4):108–14. https://doi.org/10.5501/wjv.v1.i4.108.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  5. Bank A, Dorazio R, Leboulch P. A phase I/II clinical trial of beta-globin gene therapy for beta-thalassemia. Ann N Y Acad Sci. 2005;1054:308–16. https://doi.org/10.1196/annals.1345.007.

    CAS  CrossRef  PubMed  Google Scholar 

  6. Barberi T, Willis LM, Socci ND, Studer L. Derivation of multipotent mesenchymal precursors from human embryonic stem cells. PLoS Med. 2005;2:0554–60. https://doi.org/10.1371/journal.pmed.0020161.

    CAS  CrossRef  Google Scholar 

  7. Barnes D, Sato G. Serum-free cell culture: a unifying approach. Cell. 1980;22:649–55.

    CAS  CrossRef  PubMed  Google Scholar 

  8. Caplan A. Mesenchymal stem cells. J Orthop Res. 1991;9:641–50. https://doi.org/10.1002/jor.1100090504.

    CAS  CrossRef  PubMed  Google Scholar 

  9. Caplan AI, Correa D. The MSC: an injury drugstore. Cell Stem Cell. 2011;9:11–5. https://doi.org/10.1016/j.stem.2011.06.008.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  10. Chadwick K, Wang L, Li L, Menendez P, Murdoch B, Rouleau A, Bhatia M. Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood. 2003;102(3):906–15. https://doi.org/10.1182/blood-2003-03-0832.

    CAS  CrossRef  PubMed  Google Scholar 

  11. Cheng M, Chen Y, Xiao W, Sun R, Tian Z. NK cell-based immunotherapy for malignant diseases. Cell Mol Immunol. 2013;10:230–52. https://doi.org/10.1038/cmi.2013.10.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  12. Chunmakov K. Current status and future of polio vaccine and vaccination. In: Lukashevich I, Shirwan H, editors. Novel technologies for vaccine development. New York: Springer; 2014. p. 87–112.

    Google Scholar 

  13. Cohen SN, Chang AC, Boyer HW, Helling RB. Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci U S A. 1973;70(11):3240–4.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  14. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Péault B. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3:301–13. https://doi.org/10.1016/j.stem.2008.07.003.

    CAS  CrossRef  PubMed  Google Scholar 

  15. D’Amour K, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol. 2006;24:1392–401. https://doi.org/10.1038/nbt1259.

    CAS  CrossRef  PubMed  Google Scholar 

  16. Eagle H. Nutrition needs of mammalian cells in tissue culture. Science. 1955;122:501–4.

    CAS  CrossRef  PubMed  Google Scholar 

  17. Earle WR, Schilling EL, Stark TH, Straus NP, Brown MF, Shelton E. Production of malignancy in vitro IV. The mouse fibroblast cultures and changes seen in the living cells. J Natl Cancer Inst. 1943;4:165–212.

    CAS  Google Scholar 

  18. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryo. Nature. 1981;292:154–6.

    CAS  CrossRef  PubMed  Google Scholar 

  19. Gey GO, Coffman WD, Kubicek MT. Tissue culture studies of the proliferative capacity of cervical carcinoma and normal epithelium. Cancer Res. 1952;12:264–5.

    Google Scholar 

  20. Green H, Meuth M. An established pre-adipose cell line and its differentiation in culture. Cell. 1974;3(2):127–33. https://doi.org/10.1016/0092-8674(74)90116-0.

    CAS  CrossRef  PubMed  Google Scholar 

  21. Greene LA, Tischler AS. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci. 1976;73:2424–8.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  22. Ham RG. Clonal growth of mammalian cells in a chemically defined, synthetic medium. Proc Natl Acad Sci U S A. 1965;53:288–93.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  23. Hannan NR, Segeritz CP, Touboul T, Vallier L. Production of hepatocyte-like cells from human pluripotent stem cells. Nat Protoc. 2013;8(2):430–7.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  24. Harrison RG. Observation on the living developing nerve fiber. Proc Soc Exp Biol Med. 1907;4:140–3.

    CrossRef  Google Scholar 

  25. Hass R, Kasper C, Böhm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal: CCS. 2011;9:12. https://doi.org/10.1186/1478-811X-9-12.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  26. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585–621. https://doi.org/10.1016/0014-4827(61)90192-6.

    CAS  CrossRef  PubMed  Google Scholar 

  27. Hossler P, Khattak SF, Li ZJ. Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology. 2009;19(9):936–49. https://doi.org/10.1093/glycob/cwp079.

    CAS  CrossRef  PubMed  Google Scholar 

  28. Jacobs JP, Jones CM, Baille JP. Characteristics of a human diploid cell designated MRC-5. 1970. https://doi.org/10.1038/227168a0.

    CAS  CrossRef  PubMed  Google Scholar 

  29. Janowska-Wieczorek A, Marquez-Curtis LA, Shirvaikar N, Ratajczak MZ. The role of complement in the trafficking of hematopoietic stem/progenitor cells. Transfusion. 2012;52:2706–16. https://doi.org/10.1111/j.1537-2995.2012.03636.x.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  30. Kalani MYS, Martirosyan N. Direct conversion of fibroblasts to functional neurons. World Neurosurg. 2012;77:7–8. https://doi.org/10.1016/j.wneu.2011.11.002.

    CrossRef  PubMed  Google Scholar 

  31. Kaufman RJ, Sharp PA. Construction of a modular dihydrofolate-reductase Cdna gene – analysis of signals utilized for efficient expression. Mol Cell Biol. 1982;2(11):1304–19.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  32. Kelaini S. Direct reprogramming of adult cells : avoiding the pluripotent state. Stem Cells and Cloning: Adv Appl. 2014;2014:19–29.

    Google Scholar 

  33. Kirchhoff C, Araki Y, Huhtaniemi I, Matusik RJ, Osterhoff C, Poutanen M, Samalecos A, Sipilä P, Suzuki K, Orgebin-Crist MC. Immortalization by large T-antigen of the adult epididymal duct epithelium. Mol Cell Endocrinol. 2004;216:83–94. https://doi.org/10.1016/j.mce.2003.10.073.

    CAS  CrossRef  PubMed  Google Scholar 

  34. Klein R, Teodorescu M. Propagation of poliovirus of Cercopithecus monkey kidney cells in rolling bottles. Archives Roumaines De Pathologie Experimentales Et De Microbiologie. 1969;28:247–52.

    CAS  PubMed  Google Scholar 

  35. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256:495–7.

    CAS  CrossRef  PubMed  Google Scholar 

  36. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920–6. https://doi.org/10.1126/science.8493529.

    CAS  CrossRef  PubMed  Google Scholar 

  37. Leen AM, Rooney CM, Foster AE. Improving T cell therapy for cancer. Annu Rev Immunol. 2007;25:243–65. https://doi.org/10.1146/annurev.immunol.25.022106.141527.

    CAS  CrossRef  PubMed  Google Scholar 

  38. Lundberg AS, Randell SH, Stewart S, Elenbaas B, Hartwell K, Brooks MW, Fleming MD, Olsen JC, Miller SW, Weinberg R, Hahn WC. Immortalization and transformation of primary human airway epithelial cells by gene transfer. Oncogene. 2002;21:4577–86. https://doi.org/10.1038/sj.onc.1205550.

    CAS  CrossRef  PubMed  Google Scholar 

  39. Macpherson I, Stoker M. Polyoma transformation of hamster cell clones—an investigation of genetic factors affecting cell competence. Virology. 1962;16:147–51.

    CAS  CrossRef  PubMed  Google Scholar 

  40. Majumdar MK, Thiede M, Mosca JD, Moorman M, Gerson SL. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol. 1998;176:57–66. https://doi.org/10.1002/(SICI)1097-4652(199807)176:1<57::AID-JCP7>3.0.CO;2-7.

    CAS  CrossRef  PubMed  Google Scholar 

  41. Margariti A, Winkler B, Karamariti E, Zampetaki A, Tsai T-n, Baban D, Ragoussis J, Huang Y, Han J-DJ, Zeng L, Hu Y, Xu Q. Direct reprogramming of fibroblasts into endothelial cells capable of angiogenesis and reendothelialization in tissue-engineered vessels. Proc Natl Acad Sci U S A. 2012;109:13793–8. https://doi.org/10.1073/pnas.1205526109.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  42. Masip M, Veiga A, Belmonte JCI, Simón C. Reprogramming with defined factors: from induced pluripotency to induced transdifferentiation. Mol Hum Reprod. 2010;16:856–68. https://doi.org/10.1093/molehr/gaq059.

    CAS  CrossRef  PubMed  Google Scholar 

  43. Massard C, Zermati Y, Pauleau a-L, Larochette N, Métivier D, Sabatier L, Kroemer G, Soria J-C. hTERT: a novel endogenous inhibitor of the mitochondrial cell death pathway. Oncogene. 2006;25:4505–14. https://doi.org/10.1038/sj.onc.1209487.

    CAS  CrossRef  PubMed  Google Scholar 

  44. Mats B, Anders L, Anders N, Claes O, Olle I, Lars P. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331:889–95. https://doi.org/10.1056/NEJM199410063311401.

    CrossRef  Google Scholar 

  45. McKenzie TJ, Lillegard JB, Nyberg SL. Artificial and bioartificial liver support. Semin Liver Dis. 2008;28(2):210–7. https://doi.org/10.1055/s-2008-1073120.

    CrossRef  PubMed  Google Scholar 

  46. Mendelson A, Frenette PS. Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat Med. 2014;20:833–46. https://doi.org/10.1038/nm.3647.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  47. Mikkers HM, Feund C, Mummery CL, Hoeben RC. Cell replacement therapies: is it time to reprogram? Hum Gene Ther. 2014;25:866–74. https://doi.org/10.1089/hum.2014.097.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  48. Mitalipov S, Wolf D. Totipotency, pluripotency and nuclear reprogramming. Adv Biochem Eng Biotechnol. 2009;114:185–99. https://doi.org/10.1007/10_2008_45.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  49. Mowat GN, Chapman G. Growth of foot and mouth disease virus in a fibroblastic cell line derived from hamster kidneys. Nature. 1962;194(4825):253.

    CAS  CrossRef  PubMed  Google Scholar 

  50. Murphy WL, McDevitt TC, Engler AJ. Materials as stem cell regulators. Nat Mater. 2014;13(6):547–57. https://doi.org/10.1038/Nmat3937.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  51. Murry CE, Keller G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell. 2008;132(4):661–80. https://doi.org/10.1016/j.cell.2008.02.008.

    CAS  CrossRef  PubMed  Google Scholar 

  52. Nunberg JH, Kaufman RJ, Schimke RT, Urlaub G, Chasin LA. Amplified dihydrofolate-reductase genes are localized to a homogeneously staining region of a single chromosome in a methotrexate-resistant Chinese-hamster ovary cell line. Proc Natl Acad Sci U S A. 1978;75(11):5553–6. https://doi.org/10.1073/pnas.75.11.5553.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  53. Nyberg SL, Ken S, Peshwa MV, Sielaff TD, Crotty PL, Mann HJ, Remmel RP, Payne WD, Hu WS, Cerra FB. Extracorporeal application of a gel-entrapment, bioartificial liver: demonstration of drug metabolism and other biochemical functions. Cell Transplant. 1993a;2(6):441–52.

    CAS  CrossRef  PubMed  Google Scholar 

  54. Nyberg SL, Shatford RA, Peshwa MV, White JG, Cerra FB, Hu WS. Evaluation of a hepatocyte-entrapment hollow fiber bioreactor: a potential bioartificial liver. Biotechnol Bioeng. 1993b;41(2):194–203. https://doi.org/10.1002/bit.260410205.

    CAS  CrossRef  PubMed  Google Scholar 

  55. Ohnuki M, Takahashi K. Present and future challenges of induced pluripotent stem cells. Phil Trans R Soc B 2015:370(1680). https://doi.org/10.1098/rstb.2014.0367.

    CrossRef  Google Scholar 

  56. Park H, Cannizzaro C, Vunjak-Novakovic G, Langer R, Vacanti CA, Farokhzad OC. Nanofabrication and microfabrication of functional materials for tissue engineering. Tissue Eng. 2007;13(8):1867–77. https://doi.org/10.1089/ten.2006.0198.

    CAS  CrossRef  PubMed  Google Scholar 

  57. Puck TT. The genetics of somatic mammalian cells. Adv Biol Med Phys. 1957;5:75–101.

    CAS  CrossRef  PubMed  Google Scholar 

  58. Ramboer E, Craene BD, Kock JD, Vanhaecke T, Berx G, Rogiers V, Vinken M. Review strategies for immortalization of primary hepatocytes. J Hepatol. 2014;61:925–43. https://doi.org/10.1016/j.jhep.2014.05.046.

    CAS  CrossRef  PubMed  Google Scholar 

  59. Ratcliffe E, Glen KE, Naing MW, Williams DJ. Current status and perspectives on stem cell-based therapies undergoing clinical trials for regenerative medicine: case studies. Br Med Bull. 2013;108:73–94. https://doi.org/10.1093/bmb/ldt034.

    CrossRef  PubMed  Google Scholar 

  60. Richardson JB, Caterson B, Evans EH, Ashton BA, Roberts S. Repair of human articular cartilage after implantation of autologous chondrocytes. Bone Joint J. 1999;81-B:1064–8.

    CrossRef  Google Scholar 

  61. Rodriguez-Antona C, Donato MT, Boobis A, Edwards RJ, Watts PS, Castell JV, Gomez-Lechon MJ. Cytochrome P450 expression in human hepatocytes and hepatoma cell lines: molecular mechanisms that determine lower expression in cultured cells. Xenobiotica. 2002;32(6):505–20. https://doi.org/10.1080/00498250210128675.

    CAS  CrossRef  PubMed  Google Scholar 

  62. Russell WC, Graham FL, Smiley J, Nairn R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol. 1977;36:59–72. https://doi.org/10.1099/0022-1317-36-1-59.

    CrossRef  PubMed  Google Scholar 

  63. Scherer WF, Syverton JT, Gey GO. Studies on the propagation in vitro of poliomyelitis viruses: IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. J Exp Med. 1953;97:695.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  64. Schneider U, Schwenk H-U, Bornkamm G. Characterization of EBV-genome negative “null” and “T” cell lines derived from children with acute lymphoblastic leukemia and leukemic transformed non-Hodgkin lymphoma. Int J Cancer. 1977;19:621–6. https://doi.org/10.1002/ijc.2910190505.

    CAS  CrossRef  PubMed  Google Scholar 

  65. Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, Blumenthal PD, Huggins GR, Gearhart JD. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci U S A. 1998;95:13726–31.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  66. Sharp J, Frame J, Siegenthaler M, Nistor G, Keirstead HS. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants improve recovery after cervical spinal cord injury. Stem Cells. 2010;28(1):152–63. https://doi.org/10.1002/stem.245.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  67. Shevchenko RV, James SL, James SE. A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface. 2010;7(43):229–58. https://doi.org/10.1098/rsif.2009.0403.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  68. Si-Tayeb K, Noto FK, Nagaoka M, Li J, Battle M, Duris C, North PE, Dalton S, Duncan S. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology. 2010;51:297–305. https://doi.org/10.1002/hep.23354.

    CAS  CrossRef  PubMed  Google Scholar 

  69. Silva J, Barrandon O, Nichols J, Kawaguchi J, Theunissen TW, Smith A. Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol. 2008;6:2237–47. https://doi.org/10.1371/journal.pbio.0060253.

    CAS  CrossRef  Google Scholar 

  70. Singer NG, Caplan AI. Mesenchymal stem cells: mechanisms of inflammation. Annu Rev Pathol Mech Dis. 2011;6:457–78. https://doi.org/10.1146/annurev-pathol-011110-130230.

    CAS  CrossRef  Google Scholar 

  71. Smith AU, Polge C. Survival of spermatozoa at low temperatures. Nature. 1950;166:668–9. https://doi.org/10.1038/166668a0.

    CAS  CrossRef  PubMed  Google Scholar 

  72. Song JJ, Ott HC. Organ engineering based on decellularized matrix scaffolds. Trends Mol Med. 2011;17(8):424–32. https://doi.org/10.1016/j.molmed.2011.03.005.

    CAS  CrossRef  PubMed  Google Scholar 

  73. Song K, Nam Y-J, Luo X, Qi X, Tan W, Huang GN, Acharya A, Smith CL, Tallquist MD, Neilson EG, Hill JA, Bassel-Duby R, Olson EN. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature. 2012;485:599–604. https://doi.org/10.1038/nature11139.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  74. Stanley P. Golgi glycosylation. Cold Spring Harb Perspect Biol. 2011;3(4):a005199.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  75. Stewart SA, Hahn WC, O'Connor BF, Banner EN, Lundberg AS, Modha P, Mizuno H, Brooks MW, Fleming M, Zimonjic DB, Popescu NC, Weinberg RA. Telomerase contributes to tumorigenesis by a telomere length-independent mechanism. Proc Natl Acad Sci U S A. 2002;99:12606–11. https://doi.org/10.1073/pnas.182407599.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  76. Sutmoller P, Bartelling SJ. The history of foot and mouth disease vaccine development: a personal perspective. In: Dodet B, Vicari M (eds) Foot-and-mouth disease: control strategies. Éditions scientifiques et médicales Elsevier SAS, France, 2003. pp 259–72.

    Google Scholar 

  77. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72. https://doi.org/10.1016/j.cell.2007.11.019.

    CAS  CrossRef  PubMed  Google Scholar 

  78. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76. https://doi.org/10.1016/j.cell.2006.07.024.

    CAS  CrossRef  PubMed  Google Scholar 

  79. Thomson JA, Itskovitz-eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Adv Sci. 1998;282:1145–7. https://doi.org/10.1126/science.282.5391.1145.

    CAS  CrossRef  Google Scholar 

  80. Todaro GJ, Green H. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J Cell Biol. 1963;17:299–313.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  81. Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell. 2015;17:11–22. https://doi.org/10.1016/j.stem.2015.06.007.

    CAS  CrossRef  PubMed  Google Scholar 

  82. Trounson A, Thakar R, Lomax G, Gibbons D. Clinical trials for stem cell therapies. BMC Med. 2011;9:52. https://doi.org/10.1186/1741-7015-9-52.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  83. van Wezel AL. Growth of cell strains and primary cells on microcarriers in homogeneous culture. Nature. 1967;216:64–5.

    CrossRef  PubMed  Google Scholar 

  84. Vazin T, Freed WJ. Human embryonic stem cells: derivation, culture, and differentiation: a review. Restor Neurol Neurosci. 2010;28:589–603. https://doi.org/10.3233/RNN-2010-0543.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  85. Vilcek J, Havell EA. Stabilization of interferon messenger RNA activity by treatment of cells with metabolic inhibitors and lowering of the incubation temperature. Proc Natl Acad Sci U S A. 1973;70:3909–13.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  86. Wang Y, Cui C-B, Yamauchi M, Miguez P, Roach M, Malavarca R, Costello MJ, Cardinale V, Wauthier E, Barbier C, Gerber D, Alvaro D, Reid LM. Lineage restriction of human hepatic stem cells to mature fates is made efficient by tissue-specific biomatrix scaffolds. Hepatology (Baltimore, MD). 2011;53:293–305. https://doi.org/10.1002/hep.24012.

    CAS  CrossRef  Google Scholar 

  87. Weissman IL, Anderson DJ, Gage F. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol. 2001;17:387–403. https://doi.org/10.1146/annurev.cellbio.17.1.387.

    CAS  CrossRef  PubMed  Google Scholar 

  88. Wurm F. CHO quasispecies—implications for manufacturing processes. Processes. 2013;1(3):296.

    CAS  CrossRef  Google Scholar 

  89. Xie Y, Yin T, Wiegraebe W, He XC, Miller D, Stark D, Perko K, Alexander R, Schwartz J, Grindley JC, Park J, Haug JS, Wunderlich JP, Li H, Zhang S, Johnson T, Feldman RA, Li L. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature. 2009;457:97–101. https://doi.org/10.1038/nature07639.

    CAS  CrossRef  PubMed  Google Scholar 

  90. Yasumura Y, Kawakita M. The research for the SV40 by means of tissue culture technique. Nippon Rinsho. 1963;21(6):1201–19.

    Google Scholar 

  91. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20. https://doi.org/10.1126/science.1151526.

    CAS  CrossRef  PubMed  Google Scholar 

  92. Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature. 2008;455:627–32. https://doi.org/10.1038/nature07314.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  93. Zhu S, Rezvani M, Harbell J, Mattis AN, Wolfe AR, Benet LZ, Willenbring H, Ding S. Mouse liver repopulation with hepatocytes generated from human fibroblasts. Nature. 2014;508:93–7. https://doi.org/10.1038/nature13020.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Shou Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

O’Brien, S., Park, Y., Azarin, S., Hu, WS. (2018). Cell Culture Bioprocess Technology: Biologics and Beyond. In: Kasper, C., Charwat, V., Lavrentieva, A. (eds) Cell Culture Technology. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-319-74854-2_1

Download citation