Skip to main content

Preventing Surgical Site Infections in Otolaryngology

  • Chapter
  • First Online:
Infections of the Ears, Nose, Throat, and Sinuses

Abstract

Surgical site infections (SSIs) cause significant morbidity and mortality as well as increased cost and length of stay. Guidelines on measures to reduce SSIs have been offered by many organizations, including the World Health Organization in 2016 and the Centers for Disease Control and Prevention in 2017. Recommended measures include maintaining perioperative normothermia, normovolemia, and glycemic control, ensuring adequate tissue oxygenation, and the appropriate use of surgical antibiotic prophylaxis. This chapter discusses these recommendations and their efficacy in preventing SSIs in otolaryngology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Centers for Disease Control and Prevention (CDC). Surgical site infection (SSI) event, Jan 2017 update. http://www.cdc.gov/nhsn/pdfs/pscmanual/9pscssicurrent.pdf. Accessed Oct 2017.

  2. Berríos-Torres SI, Umscheid CA, Bratzler DW, et al., For the Healthcare Infection Control Practices Advisory Committee Centers for disease control and prevention guideline for the prevention of surgical site infection, 2017. JAMA Surg 2017;152(8):784–791. doi:https://doi.org/10.1001/jamasurg.2017.0904.

    Article  PubMed  Google Scholar 

  3. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8):e1002533. https://doi.org/10.1371/journal.pbio.1002533.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bruce J, Russell EM, Mollison J, Krukowski ZH. The quality of measurement of surgical wound infection as the basis for monitoring: a systematic review. J Hosp Infect. 2001;49(2):99–108.

    Article  CAS  PubMed  Google Scholar 

  5. European Centre for Disease Prevention and Control (ECDC). Surveillance of surgical site infections in European hospitals – HAISSI protocol. Protocol version 1.02. Stockholm: ECDC; 2012. http://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/120215_TED_SSI_protocol.pdf. Accessed Nov 2017.

  6. Yarlagadda BB, Deschler DG, Rich DL, et al. Head and neck free flap surgical site infections in the era of the Surgical Care Improvement Project. Head Neck. 2016;38(Suppl 1):E392–8.

    Article  PubMed  Google Scholar 

  7. Durand ML, Yarlagadda BB, Rich DL, et al. The time course and microbiology of surgical site infections after head and neck free flap surgery. Laryngoscope. 2015;125:1084–9.

    Article  PubMed  Google Scholar 

  8. Holtz TH, Wenzel RP. Postdischarge surveillance for nosocomial wound infection: a brief review and commentary. Am J Infect Control. 1992;20(4):206–13.

    Article  CAS  PubMed  Google Scholar 

  9. Oliveira AC, Carvalho DV. Postdischarge surveillance: the impact on surgical site infection incidence in a Brazilian university hospital. Am J Infect Control. 2004;32(6):358–61.

    Article  PubMed  Google Scholar 

  10. Ban KA, Minei JP, Laronga C, et al. American College of Surgeons and Surgical Infection Society: surgical site infection guidelines, 2016 update. J Am Coll Surg. 2017;224(1):59–74. https://doi.org/10.1016/j.jamcollsurg.2016.10.029.

    Article  PubMed  Google Scholar 

  11. Anderson DJ, Podgorny K, Berríos-Torres SI, et al. Strategies to prevent surgical site infections in acute care hospitals: 2014 update. Infect Control Hosp Epidemiol. 2014;35(6):605–27. https://doi.org/10.1086/676022.

    Article  PubMed  PubMed Central  Google Scholar 

  12. World Health Organization. Global guidelines for the prevention of surgical site infection. http://www.who.int/gpsc/ssi-guidelines/en/. Accessed Oct 2017.

  13. Sievert DM, Ricks P, Edwards JR, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010. Infect Control Hosp Epidemiol. 2013;34(1):1–14.

    Article  PubMed  Google Scholar 

  14. Stefani S, Chung DR, Lindsay JA, et al. Methicillin-resistant Staphylococcus aureus (MRSA): global epidemiology and harmonization of typing methods. Int J Antimicrob Agents. 2012;39(4):273–82.

    Article  CAS  PubMed  Google Scholar 

  15. Davis KA, Stewart JJ, Crouch HK, Florez CE, Hospenthal DR. Methicillin-resistant Staphylococcus aureus (MRSA) nares colonization at hospital admission and its effect on subsequent MRSA infection. Clin Infect Dis. 2004;39(6):776–82.

    Article  PubMed  Google Scholar 

  16. Kalra L, Camacho F, Whitener CJ, et al. Risk of methicillin-resistant Staphylococcus aureus surgical site infection in patients with nasal MRSA colonization. Am J Infect Control. 2013;41(12):1253–7.

    Article  PubMed  Google Scholar 

  17. Matheson A, Christie P, Stari T, et al. Nasal swab screening for methicillin-resistant Staphylococcus aureus—how well does it perform? A cross-sectional study. Infect Control Hosp Epidemiol. 2012;33(8):803–8.

    Article  PubMed  Google Scholar 

  18. Morgan DJ, Day HR, Furuno JP, et al. Improving efficiency in active surveillance for methicillin-resistant Staphylococcus aureus or vancomycin-resistant Enterococcus at hospital admission. Infect Control Hosp Epidemiol. 2010;31(12):1230–5. https://doi.org/10.1086/657335.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shenoy ES, Paras ML, Noubary F, Walensky RP, Hooper DC. Natural history of colonization with methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE): a systematic review. BMC Infect Dis. 2014;14:177. https://doi.org/10.1186/1471-2334-14-177.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Robicsek A, Beaumont JL, Peterson LR. Duration of colonization with methicillin-resistant Staphylococcus aureus. Clin Infect Dis. 2009;48(7):910–3.

    Article  PubMed  Google Scholar 

  21. Sai N, Laurent C, Strale H, et al. Efficacy of the decolonization of methicillin-resistant Staphylococcus aureus carriers in clinical practice. Antimicrob Resist Infect Control. 2015;4:56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tanner J, Norrie P, Melen K. Preoperative hair removal to reduce surgical site infection. Cochrane Database Syst Rev. 2011;11:CD004122.

    Google Scholar 

  23. Darouiche RO, Wall MJ Jr, Itani KM, et al. Chlorhexidine-alcohol versus povidone-iodine for surgical-site antisepsis. N Engl J Med. 2010;362(1):18–26.

    Article  CAS  PubMed  Google Scholar 

  24. Wetterslev J, Meyhoff CS, Jørgensen LN, et al. The effects of high perioperative inspiratory oxygen fraction for adult surgical patients. Cochrane Database Syst Rev. 2015;6:CD008884.

    Google Scholar 

  25. Akca O, Ball L, Belda FJ, et al. WHO needs high FIO2? Turk J Anaesthesiol Reanim. 2017;45(4):181–92.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ball L, Lumb AB, Pelosi P. Intraoperative fraction of inspired oxygen: bringing back the focus on patient outcome. Br J Anaesth. 2017;119:16–8.

    Article  CAS  PubMed  Google Scholar 

  27. Hedenstierna G, Perchiazzi G, Meyhoff CS, Larsson A. Who can make sense of the WHO guidelines to prevent surgical site infection? Anesthesiology. 2017;126:771–3.

    Article  PubMed  Google Scholar 

  28. Kurz A, Sessler DI, Lenhardt R. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. Study of Wound Infection and Temperature Group. N Engl J Med. 1996 9;334(19):1209–15.

    Article  CAS  PubMed  Google Scholar 

  29. Melling AC, Ali B, Scott EM, Leaper DJ. Effects of preoperative warming on the incidence of wound infection after clean surgery: a randomised controlled trial. Lancet. 2001;358(9285):876–80.

    Article  CAS  PubMed  Google Scholar 

  30. Wong PF, Kumar S, Bohra A, Whetter D, Leaper DJ. Randomized clinical trial of perioperative systemic warming in major elective abdominal surgery. Br J Surg. 2007;94(4):421–6.

    Article  CAS  PubMed  Google Scholar 

  31. Boreland L, Scott-Hudson M, Hetherington K, Frussinetty A, Slyer JT. The effectiveness of tight glycemic control on decreasing surgical site infections and readmission rates in adult patients with diabetes undergoing cardiac surgery: a systematic review. Heart Lung. 2015;44(5):430–40.

    Article  PubMed  Google Scholar 

  32. Al-Niaimi AN, Ahmed M, Burish N, et al. Intensive postoperative glucose control reduces the surgical site infection rates in gynecologic oncology patients. Gynecol Oncol. 2015;136(1):71–6.

    Article  CAS  PubMed  Google Scholar 

  33. Olsen MA, Nepple JJ, Riew KD, et al. Risk factors for surgical site infection following orthopaedic spinal operations. J Bone Joint Surg Am. 2008;90(1):62–9.

    Article  PubMed  Google Scholar 

  34. de Vries FE, Gans SL, Solomkin JS, et al. Meta-analysis of lower perioperative blood glucose target levels for reduction of surgical-site infection. Br J Surg. 2017;104(2):e95–e105.

    Article  CAS  PubMed  Google Scholar 

  35. London, Department of Health High impact intervention care bundle to prevent surgical site infection. London, Department of Health, 2011. http://webarchive.nationalarchives.gov.uk/20120118171639/http://hcai.dh.gov.uk/files/2011/03/2011-03-14-HII-Prevent-Surgical-Site-infection-FINAL.pdf. Accessed Nov 2017.

  36. Bratzler DW, Dellinger EP, Olsen KM, et al. Clinical practice guidelines for antimicrobial prophylaxis in surgery. Am J Health Syst Pharm. 2013;70(3):195–283.

    Article  CAS  PubMed  Google Scholar 

  37. Ahmed NJ, Jalil MA, Al-Shedfat RI, et al. The practice of preoperative antibiotic prophylaxis and the adherence to guideline in Riyadh hospitals. Bull Env Pharmacol Life Sci. 2015;5:8–14.

    CAS  Google Scholar 

  38. Mousavi S, Zamani E, Bahrami F. An audit of perioperative antimicrobial prophylaxis: compliance with the international guidelines. J Res Pharm Pract. 2017;6(2):126–9.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Avenia N, Sanguinetti A, Cirocchi R, et al. Antibiotic prophylaxis in thyroid surgery: a preliminary multicentric Italian experience. Ann Surg Innov Res. 2009;3:10.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Samraj K, Gurusamy KS. Wound drains following thyroid surgery. Cochrane Database Syst Rev. 2007;4:CD006099.

    Google Scholar 

  41. Randel A. AAO-HNS guidelines for tonsillectomy in children and adolescents. Am Fam Physician. 2011;84(5):566–73.

    PubMed  Google Scholar 

  42. Robson A, Sturman J, Williamson P, et al. Pre-treatment clinical assessment in head and neck cancer: United Kingdom national multidisciplinary guidelines. J Laryngol Otol. 2016;130(S2):S13–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ariyan S, Martin J, Lal A, et al. Antibiotic prophylaxis for preventing surgical-site infection in plastic surgery: an evidence-based consensus conference statement from the American Association of Plastic Surgeons. Plast Reconstr Surg. 2015;135(6):1723–39.

    Article  CAS  PubMed  Google Scholar 

  44. Korinek AM, Golmard JL, Elcheick A, et al. Risk factors for neurosurgical site infections after craniotomy: a critical reappraisal of antibiotic prophylaxis on 4,578 patients. Br J Neurosurg. 2005;19(2):155–62.

    Article  PubMed  Google Scholar 

  45. Bratzler DW, Hunt DR. The surgical infection prevention and surgical care improvement projects: national initiatives to improve outcomes for patients having surgery. Clin Infect Dis. 2006;43(3):322–30.

    Article  PubMed  Google Scholar 

  46. Classen DC, Evans RS, Pestotnik SL, et al. The timing of prophylactic administration of antibiotics and the risk of surgical-wound infection. N Engl J Med. 1992;326(5):281–6.

    Article  CAS  PubMed  Google Scholar 

  47. Steinberg JP, Braun BI, Hellinger WC, et al. Timing of antimicrobial prophylaxis and the risk of surgical site infections: results from the Trial to Reduce Antimicrobial Prophylaxis Errors. Ann Surg. 2009;250(1):10–6.

    Article  PubMed  Google Scholar 

  48. Chang V, Blackwell RH, Markossian T, et al. Discordance between surgical care improvement project adherence and postoperative outcomes: implications for new Joint Commission standards. J Surg Res. 2017;212:205–13.

    Article  PubMed  Google Scholar 

  49. De Jonge SW, Gans SL, Aterna JJ, et al. Timing of preoperative antibiotic prophylaxis in 54,552 patients and the risk of surgical site infection. A systematic review and meta-analysis. Medicine. 2017;96(29):e6903.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Langerman A, Ham SA, Pisano J, et al. Laryngectomy complications are associated with perioperative antibiotic choice. Otolaryngol Head Neck Surg. 2015;153(1):60–8.

    Article  PubMed  Google Scholar 

  51. Pool C, Kass J, Spivack J, et al. Increased surgical site infection rates following clindamycin use in head and neck free tissue transfer. Otolaryngol Head Neck Surg. 2016;154(2):272–8.

    Article  PubMed  Google Scholar 

  52. Goyal N, Yarlagadda BB, Deschler DG, et al. Surgical site infections in major head and neck surgeries involving pedicled flap reconstruction. Ann Otol Rhinol Laryngol. 2017;126(1):20–8.

    Article  PubMed  Google Scholar 

  53. Simons JP, Johnson JT, Yu VL, et al. The role of topical antibiotic prophylaxis in patients undergoing contaminated head and neck surgery with flap reconstruction. Laryngoscope. 2001;111(2):329–35.

    Article  CAS  PubMed  Google Scholar 

  54. Navalkele B, Pogue JM, Karino S, et al. Risk of Acute kidney injury in patients on concomitant vancomycin and piperacillin-tazobactam compared to those on vancomycin and cefepime. Clin Infect Dis. 2017;64(2):116–23.

    Article  PubMed  Google Scholar 

  55. Hammond DA, Smith MN, Li C, et al. Systematic review and meta-analysis of acute kidney injury associated with concomitant vancomycin and piperacillin/tazobactam. Clin Infect Dis. 2017;64(5):666–74.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlene L. Durand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Durand, M.L. (2018). Preventing Surgical Site Infections in Otolaryngology. In: Durand, M., Deschler, D. (eds) Infections of the Ears, Nose, Throat, and Sinuses. Springer, Cham. https://doi.org/10.1007/978-3-319-74835-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74835-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74834-4

  • Online ISBN: 978-3-319-74835-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics