Geophysical Methods for Cultural Heritage

Part of the Springer Geophysics book series (SPRINGERGEOPHYS)


The Electrical Resistivity Tomography (ERT) has been used by many geophysics for archaeological investigations since the 1960s. The electrical resistivity parameter, on which the method is based, has such a large variability to allow the great majority of the structures and bodies of archaeological and architectural interest to be readily distinguished, in principle, from the hosting material. In general, the rock resistivity depends on many factors, as water content in fissures and fractures, porosity, degree of saturation and nature of pore electrolytes. In dry state, most rocks are non-conducting, i.e. they have extremely high resistivities, which decrease rapidly with existence of fluids, usually containing various ions to form the electrolytic solution. In archaeological prospecting, the presence of a high resistivity anomaly is usually an indicator of some resistive structure, such as the presence of accumulated tiles, a stone wall, building foundation or a cavity respect to the less resistive hosting soil. Instead, the presence of a moist ditch filling in a resistive rock background is characterised by a low conductive anomaly. In the study of historical buildings, where for capillary ascent of humidity and ingression of more or less aggressive waters, internal alteration nucleuses, typically characterised by very low resistivities, become the sources of degradation and even dis-aggregation of structure. To investigate the resistivity distribution along a profile, an apparent resistivity dataset is collected by means of a device composed of a pair of energizing electrodes that sends the current into the ground and a pair of potentiometric electrodes that measures the potential difference generated by the current input. Nowadays, sophisticated low-cost multi-electrode instruments are available, which store a considerable sequence of data in a detailed way. A numerical inversion is used to convert measured apparent resistivity distributed along a pseudosection to electrical resistivity values displayed as a function of depth below surface. The geoelectric resistivity tomography (ERT) approach comes from taking many apparent resistivity determinations at as many locations as possible and involves the joint inversion of many independent tests, using an algorithm to discern subtle details from differences, which would otherwise not be seen in any one test.


Archaeological Prospection Pseudosection Receiver Electrode Time Domain Electromagnetic Method (TDEM) Frequency Domain Electromagnetic Method (FDEM) 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aitken M.J., Webster G., Rees A., 1958, Magnetic Prospecting, Antiquity, 32, pp. 270–271.Google Scholar
  2. Aitken, M.J., 1974. Physics and archaeology, 2nd edition. Oxford: Claredon Press, 286 pp.Google Scholar
  3. Alaia, R., Patella, D., and Mauriello, P., 2008. Application of the geoelectrical 3D probability tomography in a test-site of the archaeological park of Pompei (Naples, Italy), Journal of Geophysics and Engineering, 5, 67–76,
  4. Aubry L., Benech C., Marmet E., Hesse A., 2001, Recent achievements and trends of research for geophysical prospection of archaeological sites, in Journal of Radioanalytical and Nuclear Chemistry, Vol. 247, No. 3, pp. 621– 628.Google Scholar
  5. Auken EL, Pellerin L, Christensen NB, Sorensen K., 2006, A survey of current trends in near-surface electrical and electromagnetic methods, in Geophysics 71(5), pp. 249–260.Google Scholar
  6. Barker, R., 1992. A simple algorithm for electrical imaging of the subsurface, First Break, vol. 10, no. 2, pp. 53–62.Google Scholar
  7. Basile, V., Carrozzo, M.T., Negri, S., Nuzzo, L., Quarta, T. And Villani, A.V. 2000. A ground-penetrating radar survey for archaeological investigations in an urban area (Lecce, Italy). Journal of Applied Geophysics, 44: 15–32.Google Scholar
  8. Beaussillon R., Benech C., A. Tabbagh A., 1996, A two frequency slingram apparatus for archaeological and pedological application, in 2nd Environmental and Engineering Geophysical Society Meeting, Nantes, 2–5 September 1996, p. 15.Google Scholar
  9. Becker H., 1995. From nanotesla to picotesla. A new window for magnetic prospecting in archaeology. Archaeological Prospection 2:217–228.Google Scholar
  10. Becker H. And Fassbinder J.W.M., 2001. Magnetic prospecting in archaeological sites. ICOMOS ed: Paris.Google Scholar
  11. Becker H., 2009. Caesium magnetometry for landscape-archaeology. In Seeing the Unseen–Geophysics and Landscape Archaeology, Ed. Campana S. and Piro S., CRC Press Taylor & Francis Group, pp 129–165.Google Scholar
  12. Becker H., Criminale M., Gallo D., 2005. Aerial photography and high-resolution magnetic surveys at the Celone River Valley (Southern Italy). Proceedings of 6th International Archaeological Prospection Conference, Ed. Piro S. (ISBN88–902028), Roma, pp. 21-24.Google Scholar
  13. Benech C. and Marmet E., 1999, Optimum Depth of Investigation and Conductivity Response Rejection of the Different Electromagnetic Devices Measuring Apparent Magnetic Susceptibility, in Archaeological prospection, Volume 6, Issue 1, pag. 31–45.Google Scholar
  14. Benech C., 2007. New approach to the study of city planning and domestic dwellings in the ancient near East. Archaeological Prospection 14: 87-103.Google Scholar
  15. Berdichevsky, M.N. & Zhdanov, M.S., 1984. Advanced theory of deep geomagnetic sounding. Amsterdam, Elsevier, 408 pp.Google Scholar
  16. Bernabini, M., Brizzolari, E., Monna, D., Padula, G., Piro, S. & Versino, L., 1985. Individuazione di cavità sepolte mediante prospezione geoelettrica. Esempio di applicazione: ricerca di tombe nella necropoli di Colle del Forno nei pressi di Montelibretti (Roma). Bollettino del Servizio Geologico d’Italia, CIII, 67-79.Google Scholar
  17. Bernabini, M., Brizzolari, E. & Piro, S., 1988. Improvement of signal-to-noise ratio in resistivity profiles. Geophysical Prospecting, 36, 559-570.Google Scholar
  18. Bevan BW, 1983, Electromagnetics for mapping buried earth features, in Journal of Field Archaeology 10, Issue 1, pp. 47–54.Google Scholar
  19. Bevan B.W., 2013, Electromagnetics for mapping buried earth features, in Journal of Field Archaeology, 10, Issue 1, pp. 47–54.Google Scholar
  20. Bigman D.P., 2012, The use of Electromagnetic induction in locating graves and mapping cemeteries: an example from native North America, in Archaeological prospection, Volume 19, pag. 31–39.Google Scholar
  21. Black, W.E. & Corwin, R.F., 1984. Application of self-potential measurements to the delineation of ground-water seepage in earth fill embankments. 54th Annual International Meeting, SEG, Expanded abstracts, 162-164.Google Scholar
  22. Bongiovanni M.D., Bonomo N., de la Vega M., Osella A., 2008. Rapid evaluation of multifrequency EMI data to characterize buried structures at a historical Jesuit Mission in Argentina, in Journal of Applied Geophysics 64, pp. 37–46.Google Scholar
  23. Bozzo E., Merlanti F., Ranieri G., Sambuelli L., Finzi E., 1991. EM-VLF soundings on the eastern hill of the archaeological site of Selinunte. Bollettino di Geofisica Teorica ed Applicata 34: 132-140.Google Scholar
  24. Bozzo E., Merlandi F., 1992. Magnetic and geoelectrical measurements on the eastern hill of the archaeological site of Selinunte. Bollettino di Geofisica Teorica ed Applicata 34: 145–156.Google Scholar
  25. Bozzo E., Lombardo S., Merlanti F., Pavan M., 1994. Geoelectric and electromagnetic measurements within an organised archaeological framework: the Marzabotto example. Annali di Geofisica 37 (suppl. 5): 1199-1213.Google Scholar
  26. Bozzo E., Lombardo S., Merlanti F., 1995. Geophysical surveys at the Poliochni archaeological site (Lemnos Island, Greece): preliminary results. Archaeological Prospection 2: 1-13.Google Scholar
  27. Breiner, S., (1973 and 1999): Applications manual for portable magnetometers. Geometrics, Sunnyvale U.S.A., 57 pp.Google Scholar
  28. Brizzolati E., Ermolli F., Orlando L., Piro S., Versino L., 1992a. Integrated geophysical methods in archaeological surveys. Journal of Applied Geophysics 29:47-55.Google Scholar
  29. Brizzolari E., Piro S., Versino L., 1992b. Monograph on the Geophysical Exploration of the Selinunte Archaeological Park. Foreword. Bollettino di Geofisica Teorica ed Applicata, 34.Google Scholar
  30. Brizzolari, E., Cardarelli, E., Feroci, M., Piro, S. & Versino, L., 1992c. Vertical electric soundings and inductive electromagnetism used to investigate the calcarenitic layer in the Selinunte Archaeological Park. Bollettino di Geofisica Teorica ed Applicata, 34: 109-119.Google Scholar
  31. Brizzolari, E., Orlando, L., Piro, S. & Versino, L., (1992d): Ground Probing Radar in the Selinunte Archaeological Park. Bollettino di Geofisica Teorica ed Applicata, 34: 181–192.Google Scholar
  32. Brizzolari, E., Cardarelli, E., Feroci, M., Piro, S. & Versino, L., 1992e. Magnetic survey in the Selinunte Archaeological Park. Bollettino di Geofisica Teorica ed Applicata, 34: 157–168.Google Scholar
  33. Brizzolari, E., Cardarelli, E., Piro, S. & Versino, L., 1993. Detection of subsurface magnetic anomalies of archaeological interest: computation of tridimensional magnetic anomalies and interpretation using bidimensional cross-correlation. In “Geophysical Exploration of Archaeological Sites, Series Theory and practice of Applied Geophysics”, Vol. 7, Ed. A.Vogel. Wiesbaden: Vieweg Publishing, 3–16.Google Scholar
  34. Caldwell G.T. and Bibby M. H., 1998, The instantaneous apparent resistivity tensor: a visualization scheme for LOTEM electric field measurements, in Geophysics J. Int, 135, pp. 817–834.Google Scholar
  35. Cammarano, F., Mauriello, P., Patella, D., Piro, S., 1997, Integrated geophysical methods for archaeological prospecting. In: Volcanism and Archaeology of the Mediterranean Area, M. Cortini and B. De Vivo (Ed.), Research Signpost, Trivandrum, India.Google Scholar
  36. Cammarano F., Mauriello P., Patella D., Piro S., Rosso F., Versino L., 1998. Integration of high resolution geophysical methods. Detection of shallow depth bodies of archaeological interest. Annali di Geofisica, Vol. 41, n.3, 359-368.Google Scholar
  37. Cammarano, F., Di Fiore, B., Patella, D., and Mauriello, P., 2000, Examples of application of electrical tomographies and radar profiling to Cultural Heritage, Annals of Geophysics, 43, 309–24,
  38. Campana S., Piro S., 2009. Seeing the Unseen. Geophysics and Landscape Archaeology. Campana & Piro Editors. CRC Press, Taylor & Francis Group. Oxon UK, ISBN 978-0-415-44721-8.Google Scholar
  39. Carabelli, E. 1966. A new tool for archaeological prospecting: the sonic spectroscope for the detection of cavities. Prospezioni Archeologiche, 1, 25-35.Google Scholar
  40. Carabelli, E. 1967. Ricerca sperimentale dei dispositivi più adatti alla prospezione elettrica di cavità sotterranee. Prospezioni Archeologiche, 2, 9-21.Google Scholar
  41. Cardarelli E., Di Filippo G., Tuccinardi E. 2006b. Electrical resistivity tomography to detect buried cavities in Rome: a case study. Near Surface Geophysics Vol. 4, pp. 387-392.Google Scholar
  42. Cardarelli E., Fischanger F., 2006a. 2D data modeling by electrical resistivity tomography for complex surface geology. Geophysical Prospecting Vol. 54 pp.121-133Google Scholar
  43. Cardarelli E., Fischanger F., Piro S., 2008. Integrated geophysical survey to detect buried structures for archaeological prospecting. A casehistory at Sabine Necropolis (Rome, Italy). Near Surface Geophysics journal (EAGE), Vol. 6, n. 1, 15-20.Google Scholar
  44. Carpenter, E.W. and Habberjam, G.M., 1956. A tri-potential method of resistivity prospecting. Geophysical Prospecting, 29, 128–143.Google Scholar
  45. Chambers, J. E., Kuras, O., Meldrum, P. I., Ogilvy, R. D., and Hollands, J., 2006, Case history—electrical resistivity tomography applied to geologic, hydrogeologic, and engineering investigations at a former waste-disposal site, Geophysics, 71, B231–9.Google Scholar
  46. Chunduru, R. K., Sen, M. K. and Stoffa, P. L., 1996. “2-D resistivity inversion using spline arameterization and simulated annealing,” Geophysics, vol. 61, no. 1, pp. 151–161.Google Scholar
  47. Ciminale M., Loddo M., 2001.Aspects of magnetic data processing. Archaeological prospection, 8: n.4, 239–246.Google Scholar
  48. Clark, A.J., 1986. Archaeological geophysics in Britain. Geophysics, 51, 1404–1413.Google Scholar
  49. Clark A.J., 1990. Seeing beneath the soil: prospecting methods in archaeology. London: Batsford.Google Scholar
  50. Compare, V., Cozzolino, M., Mauriello, P., Patella, D., 2009a. Resistivity probability tomography at the Castle of Zena (Italy). Journal of Image and Video Processing, Eurasip, vol. ID 693274, ISSN: 1687-5176,
  51. Compare, V., Cozzolino, M., Mauriello, P., Patella, D., 2009b. 3D Resistivity probability tomography at the prehistoric site of Grotta Reali (Molise, Italy). Archaeological Prospection, vol. 16, n.1; p. 53–63, ISSN: 1099-0763,
  52. Constable, S. C., Parker, R. L. and Constable, C. G., 1987. Occam’s Inversion: a practical algorithm for generating smooth models from EM sounding data. Geophysics, 52, 289–300.Google Scholar
  53. Conyers LB, Ernewein EG, Grealy M, Lowe KM., 2008, Electromagnetic conductivity mapping for site prediction in meandering river floodplains, in Archaeological Prospection 15, pp. 81–91.Google Scholar
  54. Conyers L.B., Goodman D., 1997. Ground Penetrating Radar. An introduction for archaeologists. AltaMira Press, Walnut Creek, California, (ISBN 0-7619-8927-7).Google Scholar
  55. Cornelison, J.E., Jr., 1997, An Archeological and Electromagnetic Survey of Moores Creek National Battlefield (31PD273), Pender County, North Carolina. SEAC Technical Reports 6, Southeast Archeological Center, National Park Service, Tallahassee, Florida.Google Scholar
  56. Corwin, R.F. & Hoover, D.B. 1979. The self-potential method in geothermal exploration. Geophysics, 44, 226-245.Google Scholar
  57. Cosentino, P., Luzio, D., Martorana, R. and Terranova, L., 1995. Tomographic techniques for pseudo-section representation, in Proceedings of the 1st Meeting of Environmental and Engineering Geophysical Society, pp. 485–488, Turin, Italy.Google Scholar
  58. Cosentino, P., Luzio, D. and Martorana, R., 1998. Tomographic resistivity 3D mapping: filter coefficients and depth correction, in Proceedings of the 4th Meeting of Environmental and Engineering Geophysical Society, pp. 279–282, European Section, Barcelona, Spain.Google Scholar
  59. Cosentino, P. and Luzio, D., 1997. Tomographic pseudo-inversion of resistivity profiles, Annali di Geofisica, vol. 40, no. 5, pp. 1127–1144.Google Scholar
  60. Cozzolino, M., Di Giovanni, E., Mauriello, P., Vanni Desideri A. and Patella, D., 2012. Resistivity tomography in the Park of Pratolino at Vaglia (Florence, Italy). Archaeological Prospection. (,
  61. Cozzolino, M., Mauriello and Patella, D., 2013. Resistivity Tomography Imaging of the substratum of the Bedestan Monumental Complex at Nicosia, Cyprus. Archaeometry. (,
  62. Dabas, M., 2009. Theory and practice of the new fast electrical imaging system ARP. In Campana, S., Piro, S., (dir.). Seeing the Unseen, Taylor and Francis Group, London, 105–126.Google Scholar
  63. Dabas M., Hesse A., Tabbagh A., 2000. Experimental resistivity survey at the Roman Town of Wroxeter. Archaeological Prospection 7: 107-118.Google Scholar
  64. Dabas, M., Tabbagh, A., and Tabbagh, J., 1994. 3-D inversion in subsurface electrical surveying – I. Theory: Geophysics. J. Int., 119, 975–990.Google Scholar
  65. Dalan, R.A., 1989a, Geophysical Investigations of the Prehistoric Cahokia Palisade Sequence. Illinois Cultural Resources Study No. 8. Illinois Historic Preservation Agency, Springfield.Google Scholar
  66. Dalan, R.A., 1989b, Electromagnetic Reconnaissance of the Central Palisade at the Cahokia Mounds State Historic Site, The Wisconsin Archeologist,70(3):309–332.Google Scholar
  67. Dalan, R.A.,1989c, Defining Archaeological Features with Electromagnetic Surveys at the Cahokia Mounds State Historic Site, 59th Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts 89:285.Google Scholar
  68. Dalan, R.A.,1991, Defining Archaeological Features with Electromagnetic Surveys at the Cahokia Mounds State Historic Site, Geophysics 56(8):1280–1287.Google Scholar
  69. Dalan, R.A., 1993a, Issues of Scale in Archaeological Research, Effect of Scale on Archaeological and Geoscientific Perspectives, J. K. Stein and A. R. Linse, eds., pp. 67–78. Special Paper 283. Geological Society of America, Boulder, Colorado.Google Scholar
  70. Dalan, R.A., 1993b, Landscape Modification at the Cahokia Mounds Site: Geophysical Evidence of Cultural Change. Unpublished PhD. Dissertation, University of Minnesota, Minneapolis.Google Scholar
  71. Dalan, R.A., 1995, Geophysical Surveys for Archaeological Research: Electromagnetic Surveys, Ms. on file, Interagency Archeological Services, National Park Service, Denver.Google Scholar
  72. Daniels D., 2004. Ground Penetrating Radar. London: IEE.Google Scholar
  73. Davis, J.L. & Annan, A.P. 1989. Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy. Geophysical Prospecting, 37, 531–551.Google Scholar
  74. deGroot-Hedlin, C. and Constable, S., 1990. Occam’s inversion to generate smooth, two-dimensional models form magnetotelluric data. Geophysics, 55, 1613–1624.Google Scholar
  75. Deignan, T. and W. Brennan, 1992, EM Data Acquired at Brown Sheep Camp. Ms. on file, Interagency Archeological Services, National Park Service, Denver.Google Scholar
  76. Dey, A. and Morrison, H.F. 1979. Resistivity modelling for arbitrarily shaped two-dimensional structures, Geophysical Prospecting, 27, 106–136.Google Scholar
  77. Di Filippo M., Di Nezza M., Marchetti M., Urbini S., Toro A., Toro B., 2005a. Geophysical research on Via Appia: the so-called “Monte di Terra” funeral monument. Proceedings of 6th International Archaeological Prospection Conference, Ed. Piro S. (ISBN88-902028), Roma, pp. 292-294.Google Scholar
  78. Di Filippo M., Di Nezza M., Piro S., Santoro S., Toro B., 2005b. Integrated geophysical and archaeological investigations in the “Domus del Centenario”, Pompei IX, 8 (Italy). Proceedings of 6th International Archaeological Prospection Conference Ed. Piro S. (ISBN88-902028), Roma, pp. 295-299.Google Scholar
  79. Dobrin M.B. and Savit C. H., 1988. Introduction to Geophysical Prospecting: McGraw-Hill.Google Scholar
  80. Dolphin, L.T., R.L. Bollen, and G.N. Oetzel, 1974, An Underground Electromagnetic Sounder Experiment, Geophysics 39(1):49–55.Google Scholar
  81. Eder-Hinterleitner A., Neubauer W., Melichar P., 1996. Restoring magnetic anomalies. Archaeological prospection, 3: 185–197.Google Scholar
  82. Ellis, R. G. and Oldenburg, D. W., 1994. The pole-pole 3-D DC resistivity inverse problem: A conjugate-gradient approach. In Geophys. J. Internat., 119, 187–194.Google Scholar
  83. Farquharson, C.G., Oldenburgh, D.W., Routh, P.S., 2003, Simultaneous 1D inversion of loop–loop electromagnetic data for magnetic susceptibility and electrical conductivity, Geophysics 68 (6), 1857–1869.Google Scholar
  84. Fassbinder J.W.E And Reindel M., 2005. Magnetometer prospection as research for pre-Spanish cultures at Nasca and Palpa, Perù. Proceedings of 6th International Archaeological Prospection Conference, Ed. Piro S. (ISBN88–902028), Roma, pp. 6-10.Google Scholar
  85. Finzi, E. & Piro, S., 1991. Metodo per impulsi elettromagnetici. Georadar. Atti del Seminario “Geofisica per l’Archeologia”, Quaderni ITABC, 1, 53–70.Google Scholar
  86. Finzi E., Piro S., 2000. Radar (GPR) methods for historical and archaeological surveys. In “Non-destructive techniques applied to landscape archaeology”, The Archaeology of Mediterranean Landscape, Vol. 4, pp. 125–135.Google Scholar
  87. Frischknecht, F. C., V. F. Labson, B. R. Spies, and W. L. Anderson, 1991, Profiling Methods Using Small Sources, in Electromagnetic Methods in Applied Geophysics, Vol. 2., M. N. Nabighiam, ed., pp. 15–270. Society of Exploration Geophysicists, Tulsa, Oklahoma.Google Scholar
  88. Frohlich, B. & Lancaster, W.J. 1986. Electromagnetic surveying in current Middle Eastern archaeology: Application and evaluation. Geophysics, 51, 1414–1425.Google Scholar
  89. Gaffney, C.  and Gater, J. 2003 Revealing the Buried Past: geophysics for archaeologists. Tempus, Stroud.Google Scholar
  90. Gaffney V., Patterson H., Piro S., Goodman D., Nishimura Y., 2004. Multimethodological approach to study and characterise Forum Novum (Vescovio, Central Italy). Archaeological Prospection, Vol. 11, pp. 201–212.Google Scholar
  91. Gerard, R. and Tabbagh, A., 1991. A mobile four electrodes array and its application to electrical survey of planetary grounds at shallow depths. J. Geophys. Res., 96 (B-3), 4117–4123.Google Scholar
  92. Gibson, T.H. 1986. Magnetic prospection on prehistoric sites in western Canada. Geophysics, 51, 553–560.Google Scholar
  93. Godio A., S. Piro, 2005. Integrated data processing for archaeological magnetic surveys. THE LEADING EDGE (SEG), Vol. 24, N. 11, 1138–1144.Google Scholar
  94. Goodman, D. & Nishimura, Y. 1993. A Ground-radar view of Japanese burial mounds. Antiquity, 67, 349–354.Google Scholar
  95. Goodman D., Piro S., 2013. GPR Remote sensing in Archaeology. Springer (Ed), ISBN 978–3-642-31856-6, ISBN 978-3-642-31857-3 (eBook), Springer, Berlin, (Germany).
  96. Goodman D., Piro S., Nishimura Y., Patterson H., Gaffney V., 2004a. Discovery of a 1st century Roman Amphitheater and Town by GPR. Journal of Environmental and Engineering Geophysics, Vol. 9, issue 1, pp. 35–41.Google Scholar
  97. Goodman D., Schneider K., Barner M., Bergstrom V., Piro S., Nishimura Y., 2004b. Implementation of GPS navigation and 3D volume imaging of ground penetrating radar for identification of subsurface archaeology. Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems, pp. 806–813. Environmental and Engineering Geophysical Society, Colorado Springs, Colorado.Google Scholar
  98. Goodman D., Schneider K., Piro S., Nishimura Y. Pantel A.G., 2007. Ground Penetrating Radar Advances in Subsurfaces Imaging for Archaeology. In “Remote Sensing in Archaeology”, Ed. J. Wiseman and F. El-Baz. Chapter 15, pp. 367–386.Google Scholar
  99. Gosh, D.P.,1971a. Inverse filter coefficients for the computattion of apparent resistività standard curves for horizzontally stratified earth. Geophysical Prospecting, 19: 769–775.Google Scholar
  100. Gosh, D.P. 1971b. The application of linear filter theory to direct interpretation of geoelectrical resistività sounding measurements. Geophysical Prospecting, 19: 192–217.Google Scholar
  101. Grasmueck, M. 1996. 3-D ground penetrating radar applied to fracture imaging in gneiss. Geophysics, 61 (4): 1050–1064.Google Scholar
  102. Griffiths, D.H. and Turnbull, J., 1985. A multi-electrode array for resistivity surveying. First Break 3 (No. 7), 16–20.Google Scholar
  103. Griffiths D.H., Turnbull J. and Olayinka A.I. 1990, Two-dimensional resistivity mapping with a computer- controlled array. First Break 8, 121–129.Google Scholar
  104. Ha, T., Pyun, S. and Shin, C., 2006. Efficient electric resistivity inversion using adjoint state of mixed finite-element method for Poisson’s equation, Journal of Computational Physics, vol. 214, no. 1, pp. 171–186.Google Scholar
  105. Haber, E., Ascher, U.M., Oldenburg, D.W., 2004, Inversion of 3D electromagnetic data in frequency and time domain using an inexact all-at-once approach, Geophysics 69 (5), 1216–1228.Google Scholar
  106. Herbich T., 2005. Geophysical surveying in Egypt: recent results. Proceedings of 6th International Archaeological Prospection Conference, Ed. Piro S. (ISBN88–902028), Roma, pp. 421-426.Google Scholar
  107. Hesse A., 1966. Prospections Geophysiques a faible profondeur. Applications a l’Archeologie. Dunod, paris.Google Scholar
  108. Hesse A., Jolivet A., Tabbagh A., 1986. New prospects in shallow depth electrical surveying for archaeological and pedological applications. Geophysics 541(3): 585-594.Google Scholar
  109. Hesse A., 1991. Les methods de prospection electromagnetique appliqués aux sites arcaeologiques. Atti del Seminario Geofisica perl’ Archeologia. Quaderno n. 1 ITABC-CNR, 41-52.Google Scholar
  110. Hesse A., 1992. A comprehensive archaeological and geophysical survey of a Knidian pottery workshop of amphorae in Resadiye, Datca Peninsula, Turkey. Proceedings of 28th International Symposium on Archaeometry (Archaeometry ’92), Los Angeles, California, USA.Google Scholar
  111. Hesse A., Doger E., 1993. Atelier d’amphores Rhodiennes et constructions en Pierre à Hisaronu (Turquie): un cas original de prospection electro-magnetique. Revue d’Archeometrie 17: 5-10.Google Scholar
  112. Hesse A., Barba L., Link K., Oritz A., 1997. A magnetic and electrical study of archaeological structures at Loma Alta, Michoacan, Mexico. Archaeological Prospection 4: 53–67.Google Scholar
  113. Howell, M., 1968a, An Electro-magnetic Technique for the Location of Anomalous Soil Features, Bulletin of the Bristol Archaeological Research Group 3(2):32–34.Google Scholar
  114. Howell, M., 1968b, The Soil Conductivity Anomaly Detector (SCM), Archaeological Prospection.Prospezioni Archeologiche 3:101–104.Google Scholar
  115. Huang, H., Won, I., 2000. Conductivity and susceptibility mapping using broadband electromagnetic sensors, Journal of Environmental and Engineering Geophysics 5 (4), 31–41.Google Scholar
  116. Huang H., and Won I. J., 2004, Electromagnetic detection of buried metallic objects using quad–quad conductivity, Geophysics, Vol. 69, No.6, pp. 1387–1393.Google Scholar
  117. Huggins, R. 1984. Some design considerations for undertaking a magnetic survey for archaeological sources. Proceedings of the Society of Exploration Geophysicists Annual Meeting, Atlanta, Georgia, 209–212.Google Scholar
  118. Ingeman-Nielsen T. and Baumgartner F., 2006, Numerical modelling of complex resistivity effects on a homogenous half-space at low frequencies, in Geophysical Prospecting, 2006, 54, pp. 261–271.Google Scholar
  119. Inman, J.R., 1975. Resistivity inversion with ridge regression. Geophysics, 40: 798–817.Google Scholar
  120. Koefoed, O., 1979. Geosounging principles, Resistivity sounding measurements. Amsterdam, Elsevier Scienntific.Google Scholar
  121. Kozhevnikov, N. O. and S. P. Nikiforov,1995, Magnetic Viscosity of Fired Clays and Possibility of it Use for Archaeological Prospection, Science & Site: Evaluation and Conservation, J. Beavis and K. Barker, eds., pp. 163–169. Occasional Paper 1. School of Conservation Sciences, Bournemouth University, Poole, England.Google Scholar
  122. Kuzma L. And Tirpak J., 2005. Proceedings of 6th International Archaeological Prospection Conference, Ed. Piro S. (ISBN88-902028), Roma, pp. 13-16.Google Scholar
  123. Kvamme, K.L., 2000, Current Practices in Archaeogeophysics: Magnetics, Resistivity, Conductivity, and Ground-Penetrating Radar, Earth Sciences an Archaeology, P. Goldberg, V. Holliday, and R. Ferring, eds., Plenum Press, New York.Google Scholar
  124. Lapenna, V., Mastrantuono, M., Patella, D. & Di Bello, G. 1992. Magnetic and geoelectric prospecting in the archaeological area of Selinunte (Sicily, Italy). Bollettino di Geofisica Teorica ed Applicata, XXXIV, 133–143.Google Scholar
  125. Leckebusch, J. 2000. Two- and Three-dimensional Ground-penetrating Radar Survey across a medieval chair: a case study in Archaeology. Archaeological Prospection, 7 (4): 189–200.Google Scholar
  126. Li, Y. G. and Oldenburg, D. W., 1994. Inversion of 3-D dc resistivity data using an approximate inverse mapping, Geophysics, J. Int., 116, 527–537.Google Scholar
  127. Lines, L. R. and Treitel, S., Tutorial. A review of least-squares inversion and its application to geophysical. Geophysical Prospecting 32, 159–186, 1984.Google Scholar
  128. Linford N., Linford P., Martin L., Payne A., 2007. Recent results from the English Heritage caesium magnetometer system in comparison to recent fluxgate gradiometers. Archaeological Prospection, Vol. 14, 151–166.Google Scholar
  129. Linington, R.E. 1966. Test use of a gravimeter on Etruscan chamber tombs at Cerveteri. Prospezioni Archeologiche, 1, 37-41.Google Scholar
  130. Loke, M.H., 2004. Tutorial: 2-D and 3-D electrical imaging surveys.
  131. Loke, M. H. and Barker, R. D., 1996. Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method, Geophysical Prospecting, vol. 44, no. 1, pp. 131–152.Google Scholar
  132. Malagodi, S., Orlando, L., Piro, S. & Rosso, F. 1996. Location of archaeological structures using GPR method. 3-D data acquisition and radar signal processing. Archaeological Prospection, 3: 13–23.Google Scholar
  133. Marescot, L., Lopes, S. P., Rigobert, S. and Green, A. G., 2008. Nonlinear inversion of geoelectric data acquired across 3D objects using a finite-element approach, Geophysics, vol. 73, no. 3, pp. F121–F133.Google Scholar
  134. Martorana, R. And Capizzi, P., A Fast Imaging Technique Applied to 2D Electrical Resistivity Data, International Journal of Geophysics, Volume 2014, Article ID 846024,
  135. Mauriello, P., and Patella, D., 1999a. Imaging 3D structures by resistivity probability tomography, in Proceedings of the 61st EAGE Conference and Technical Exhibition, Helsinki, Finland.Google Scholar
  136. Mauriello, P., and Patella, D., 1999b. Resistivity anomaly imaging by probability tomography,” Geophysical Prospecting, vol. 47, no. 3, pp. 411–429.Google Scholar
  137. Mauriello, P., Monna, D. and Patella, D., 1998. 3D geoelectrical tomography and archaeological applications, Geophysical Prospecting, vol. 46, no. 5, pp. 543–570.Google Scholar
  138. Mauriello, P., and Patella, D., 2009. A data-adaptive probability-based fast ERT inversion method, Progress In Electromagnetics Research, 97, 275–90,
  139. Mc Neill, J. D., 1980a, Electrical Conductivity of Soils and Rocks. Technical Note TN-5. Geonics Limited, Mississauga, Ontario, Canada.Google Scholar
  140. Mc Neill, J. D., 1980b, Electromagnetic Terrain Conductivity Measurement at Low Induction Numbers. Technical Note TN-6. Geonics Limited, Mississauga, Ontario, Canada.Google Scholar
  141. Menke, W, 1989. Geophysical data analysis: Discrete Inverse Theory, 2° ed. San Diego, Academic Press, 1989.Google Scholar
  142. Moffatt, D.L., 1974. Subsurface video pulse radar. Proceedings of an Engineering Foundation Conference on Subsurface Exploration for Underground Excavation and Heavy Construction, New England College. American Society of Civil Engineers, New York.Google Scholar
  143. Morey, R.M., 1974. Continuous subsurface profiling by impulse radar. Proceedings of Engineering Foundation Conference on Subsurface Exploration for Underground Excavation and Heavy Construction, New England College. American Society of Civil Engineers, New Yor, 213-232.Google Scholar
  144. Musset Alan E. and Khan Aftab M., 2000, Looking into the earth, An introduction to geological geophysics, Cambridge University Press.Google Scholar
  145. Nabighian, M. N., 1991, Electromagnetics Methods in Applied Geophysics. Vol. I, Theory 523 pp., Vol. II, Applications, 972 pp. Society of Exploration Geophysicists, Tulsa.Google Scholar
  146. Narayan, S., Dusseault, M. B. and Nobes, D. C., 1994. Inversion techniques applied to resistivity inverse problems, Inverse Problems, vol. 10, no. 3, pp. 669–686.Google Scholar
  147. Neubauer W., Eder-Hinterleitner A., 1997a. Resistivity and Magnetics of the Roman Town Carnuntum, Austria. An example of combined interpretation of prospection data. Archaeological Prospection 4: 179–189.Google Scholar
  148. Neubauer W., Eder-Hinterleitner A., 1997b. 3D-interpretation of post-processed archaeological magnetic prospection data. Archaeological Prospection 4: 191–205.Google Scholar
  149. Neubauer W., Eder-Hinterleitner A., Seren S., Melichar P., 2002. Georadar in the Roman Civil town Carnuntum, Austria. An approach for archaeological interpretation of GPR data. Archaeological Prospection, 9: 135–156.Google Scholar
  150. Neubauer W., Locker K., Eder-Hinterleitner A., Melichar P., 2005. Geophysical prospection of middle neolithic circular ring ditch systems in lower Austria. Proceedings of 6th International Archaeological Prospection Conference, Ed. Piro S. (ISBN88-902028), Roma, pp. 43-47.Google Scholar
  151. Nishimura, Y. And Goodman, D. 2000. Ground-penetrating radar survey at Wroxeter. Archaeological Prospection, 7 (2): 101–105.Google Scholar
  152. Orlando, L., Piro, S. & Versino, L., 1987. Location of subsurface geoelectric anomalies for archaeological work: a comparison between experimental arrays and interpretation using numerical methods. Geoexploration, 24, 227-237.Google Scholar
  153. Osella A, de la Vega M, Lascano E, 2005, 3D electrical imaging of an archaeological site using electrical and electromagnetic methods, in Geophysics 70(4), pp. 101–107.Google Scholar
  154. Panissod, C., Dabas, M., Hesse, A., Jolivet, A., Tabbagh, J. and Tabbagh, A., 1998. Recent developments in shallow depth electrical and electrostatic prospecting using mobile arrays. Geophysics, 65, 1542–1550.Google Scholar
  155. Papadopoulos N.G., Tsourlos P., Tsokas G.N., Sarris A., 2006. Two-dimensional and Three-dimensional resistivity imaging in archaeological site investigation. Archaeological Prospection 13: 163-181.Google Scholar
  156. Parasnis. D. S., 1986. Principles of applied geophysics. London: Chapman and Hall, 402 pp.Google Scholar
  157. Parasnis D.S., 1997, Principles of Applied geophysic: Chapman & Hall, London, 5th edition.Google Scholar
  158. Parchas, A. and Tabbagh, A., 1978, Simultaneous measurement of electrical conductivity and magnetic susceptibility of the ground in the EM prospecting, in Archaeophysika 10, pp. 682–691.Google Scholar
  159. Pazdirek, O. and Blaha, V., 1996. Examples of resistivity imaging using ME-100 resistivity field acquisition system. EAGE 58th Conference and Technical Exhibition Extended Abstracts, Amsterdam.Google Scholar
  160. Pellerin L., 2002, Applications of Electrical and Electromagnetic Methods for Environmental and Geotechnical Investigations, in Surveys in Geophysics, 23, pp. 101–132.Google Scholar
  161. Pidlisecky, A., Haber, E. and Knight, R., 2007. RESINVM3D: a 3D resistivity inversion package, Geophysics, vol. 72, no. 2, pp. H1–H10.Google Scholar
  162. Pipan, M., Finetti, I. And Ferigo, F. 1996. Multi-fold GPR techniques with applications to high-resolution studies: two case histories. European Journal of Environmental and Engineering Geophysics, 1: 83–103.Google Scholar
  163. Pipan, M., Baradello, L., Forte, E., Prizzon, A. And Finetti, I. 1999. 2-D and 3-D processing and interpretation of multi-fold ground penetrating radar data: a case history from an archaeological site. Journal of Applied geophysics, 41: 271–292.Google Scholar
  164. Pipan, M., Baradello, L., Forte, E. And Finetti, I. 2001. Ground Penetrating radar study of Iron Age tombs in South Eastern Kazakhstan. Archaeological Prospection, 8 (3): 141–155.Google Scholar
  165. Piro S., Samir A., Versino L., 1998. Position and spatial orientation of magnetic bodies from archaeological magnetic surveys. Annali di Geofisica 41(3): 343–358.Google Scholar
  166. Piro S., Cammarano F., Mauriello P., 2000. Quantitative integration of geophysical methods for archaeological prospection. Archaeological Prospection, Vol. 7, n.4, pp 203–213.Google Scholar
  167. Piro S., Sambuelli L., Godio A., Taormina R., 2007. Beyond image analysis in processing archaeomagnetic geophysical data: examples on chamber tombs with dromos. Near Surface Geophysics Journal (EAGE), Vol. 5, n.6, 405–414.Google Scholar
  168. Piro S., 2009. Introduction to geophysics for archaeology. In “Seeing the Unseen. Geophysics and Landscape Archaeology”. Campana & Piro Editors. CRC Press, Taylor & Francis Group. Oxon UK, (ISBN 978-0-415-44721-8), pp. 27-64.Google Scholar
  169. Piro S., Goodman D., Nishimura D., 2001a. The location of Emperor Traiano’s Villa (Altopiani di Arcinazzo–Roma) using high-resolution GPR surveys. Bollettino di Geofisica Teorica ed Applicata Vol. 43, n.1–2, pp. 143–155.Google Scholar
  170. Piro S., Tsourlos P., Tsokas G.N., 2001b. Cavity detection employing advanced geophysical techniques: a case study. European Journal of Environmental and Engineering Geophysics Vol. 6, pp. 3-31.Google Scholar
  171. Pous, J., Marcuello, A. And Queralt, P., Resistivity inversion with a priori information. Geophysical Prospecting, 35: 590–603, 1987.Google Scholar
  172. Pous, J., Marcuello, A. And Queralt, P., 1987. Resistivity inversion with a priori information. Geophysical Prospecting, 35: 590–603.Google Scholar
  173. Powers C.J., Singha Kamini, and Peter Haeni F., 1999, Integration of Surface Geophysical Methods for Fracture Detection in Bedrock at Mirror Lake, New Hampshire, Presented at the USGS Toxic Substances Hydrology Program Meeting, March 8–12, ’99, Charleston, SC.Google Scholar
  174. Pracser E., Adam A., Szarka L., Muller I., Turberg P., 2000, Slingram measurements in the Mecsek Mountains. Hungary, Acta Geodaetica et Geophysica Hungarica, Vol. 35 (4), pp. 397–414.Google Scholar
  175. Pérez-Flores,M. A., Méndez-Delgado, S., Gómez-Treviño, E., 2001. Imaging low frequency and dc electromagnetic fields using a simple linear approximation. Geophysics 66 (4), 1067– 1081.Google Scholar
  176. Reynolds J. M., 1997, An Introduction to Applied and Environmental Geophysics: John Wiley & Sons.Google Scholar
  177. Saey T., De Smedt P., Meerschman E., Monirul M., Meeuws F., Van De Vijver E., Lehouck A., And Van Meirvenne M., 2012. Electrical Conductivity Depth Modelling witha Multireceiver EMI Sensor for Prospecting Archaeological Features, in Archaeol. Prospect. 19, pp. 21–30.Google Scholar
  178. Sasaki, Y., 2006. 3-D resistivity inversion using a subspace method, Geophysical Exploration, vol. 59, no. 5, pp. 425–430.Google Scholar
  179. Scollar, I.,1962, Electromagnetic Prospecting Methods in Archaeology, Archaeometry 5:146–153.Google Scholar
  180. Scollar I., Tabbagh A., Hesse A., Herzog I., 1990. Archaeological prospecting and Remote Sensing. Cambridge University Press: Cambridge.Google Scholar
  181. Shamper C. and Rejjba F., 2011, 1D inversion of multi-component and multi-frequency low-induction number EM Device (PROMIS) for near surface exploration, in PIERS online, vol.7, No. 2, pp. 126–130.Google Scholar
  182. Sheng Y., 1986, A single apparent resistivity expression for long-offset transient electromagnetics, Geophysics, 51, pp. 1291–1297.Google Scholar
  183. Shima, H., Sakashita, S. and Kobayashi, T., 1996. Developments of non-contact data acquisition techniques in electrical and electromagnetic explorations. Journal of Applied Geophysics, 35, 167–173.Google Scholar
  184. Sigurdsson, T. And Overgaard, T. 1998. Application of GPR for 3-D visualization of geological and structural variation in a limestone formation. Journal of Applied Geophysics, 40: 29–36.Google Scholar
  185. Silvester, P.P. and Ferrari, R.L., 1990. Finite elements for electrical engineers (2nd. ed.). Cambridge University Press.Google Scholar
  186. Smith, N. C. and Vozoff, K., 1984. Two-dimentional dc resistivity inversion for dipole-dipole data, IEEE Trans, Geosciences, Remote Sensing, 22, 21–28.Google Scholar
  187. Spies B.R. e Eggers D.E., 1986, The use and misure of apparent resistivity in electromagnetic method, Geophysics, 51, 1462–1471.Google Scholar
  188. Spies B.R. e Frischknecht F.C, 1991, Electromagnetic sounding in electromagnetic methods in Applied geophysics, vol. 2, Applications, ed. Nabigian, M.N., Society of exploration Geophysicists, Tulsa.Google Scholar
  189. Stright, M.J., 1986. Evaluation of archaeological site potential on the outer continental shelf using high-resolution seismic data. Geophysics, 51, 605-622.Google Scholar
  190. Tabbagh, A., 1974. Méthodes de prospection électromagnétique applicables aux problèmes archélogiques. Archaeophysika, 5, 350-437.Google Scholar
  191. Tabbagh, A.,1984a, On the Comparison between Magnetic and Electromagnetic Prospection Method for Magnetic Features Detection, Archaeometry 26(2):171–182.Google Scholar
  192. Tabbagh, A.,1984b, Interest in the Slingram EM Method for Archaeological Prospecting. 54th Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts 84:206–208.Google Scholar
  193. Tabbagh, A.,1985, The Response of a Three Dimensional Magnetic and Conductive Body in Shallow Depth Electromagnetic Prospecting, in Geophysical Journal of the Royal Astronomical Society 81:215–230.Google Scholar
  194. Tabbagh, A.,1986a, What is the Best Coil Orientation in the Slingram Electromagnetic Prospecting Method?, Archaeometry 28(2):185–196.Google Scholar
  195. Tabbagh, A., 1986b, Applications and Advantages of the Slingram Electromagnetic Method for Archaeological Prospecting, Geophysics 51(3):576–584.Google Scholar
  196. Tabbagh, A., A. Hesse, and R. Grard,1993, Determination of Electrical Properties of the Ground at Shallow Depth with an Electrostatic Quadripole: Filed Trails on Archaeological Sites, Geophysical Prospecting 41:579–597.Google Scholar
  197. Tabbagh, A.,1994, Simultaneous Measurements of Electrical Conductivity and Dielectric Permittivity of Soils Using a Slingram Electromagnetic Device in Medium Frequency Range, Archaeometry 36(1):159–170.Google Scholar
  198. Telford W.M., Geldart L.P., Sheriff R.E., Keys D.A., 1976. Applied Geophysics. Cambridge University Press, New York, U.S.A., 860 pp.Google Scholar
  199. Telford W. M., Geldart L.P. and Sheriff R.E., 1990, Applied Geophysics: Cambridge University Press, 2nd edition.Google Scholar
  200. Tite, M. S. and C. Mullins, 1969, Electromagnetic Prospecting: A Preliminary Investigation, Prospezioni Archeologiche 4:95–102.Google Scholar
  201. Tite, M. S. and C. Mullins, 1970, Electromagnetic Prospecting on Archaeological Sites Using a Soil Conductivity Meter, in Archaeometry 12(1):97–104.Google Scholar
  202. Tsokas G.N., Giannopoulos A., Tsourlos P. Vargemezis G., Tealby J.M. Sarris A., Papazachos C.B., Savopoulou T., 1994. A large scale geophysical survey in the archaeological site of Europos (northern Greece). Journal of Applied Geophysics 32: 85–98.Google Scholar
  203. Tsokas G.N., Papazachos C.B., Vafidis A., Loukoyiannakis M.Z., Vargemezis G., Tzimeas K., 1995. The detection of monumental tombs buried in tumuli by seismic refraction. Geophysics, 60(6), 1735-1742.Google Scholar
  204. Tsokas G.N., Sarris A., Pappa M., Bessios M., Papazachos C.B., Tsourlos P., Giannopoulos A., 1997b. A large scale magnetic survey in Makrygialos (Pieria), Greece. Archaeological Prospection 4: 123–137.Google Scholar
  205. Tsourlos, P., 1995. Modelling, interpretation and inversion of multielectrode resistivity survey data, PhD. Thesys, University of York.Google Scholar
  206. Ulriksen, C.P.F., 1982. Application of the impulse radar to civil engineering. PhD Dissertation, Lund University of Technology, Lund, Sweden, 179 pp.Google Scholar
  207. Van der Kruk J., Meekes J.A.C., Van den Berg P.M and Fokkema J.T., 2000, An apparent resistivity concept for low-frequency electromagnetic sounding techniques, in Geophysical Prospecting, 2000, 48, pp. 1033–1052.Google Scholar
  208. Viberg A., Remnant echoes of the past, 2012, Archaeological geophysical prospection in Sweden, Doctoral Thesis in Archaeological Science 2012 Stockholm University, pp. 36–42.Google Scholar
  209. Von Der Osten Wondelburg H., 2005, Application of Ground Penetrating Radar, magnetic and Electric Mapping, and Electromagnetic induction Methods in archaeological investigation, in Near Surface Geophysics, edited by Dwain K. Butler, pp. 621–626. Society of exploration Geophysicists, Tulsa, Oklahoma.Google Scholar
  210. Ward, S. H., and G. W. Hohmann, 1988, Electromagnetic theory for geophysical applications, in M. N. Nabighian, Ed., Electromagnetic methods in applied geophysics: Society of Exploration Geophysicists, 130–311.Google Scholar
  211. Westerberg K., 1965, The Beam-Slingram: a new portable EM-instrument for ore prospecting, in Geoexploration, Volume 3, Issue 3, pp. 149–154.Google Scholar
  212. Weymouth, J.W. 1986 a: Archaeological site surveying program at the University of Nebraska. Geophysics, 51, 538–552.Google Scholar
  213. Weymouth, J.W. 1986 b: Geophysical methods of archaeological site surveying. In “Advances in Archaeological Method and Theory”, Vol.9, 311–395.Google Scholar
  214. Witten AJ, Calvert G, Witten B, Levy T, 2003, Magnetic and electromagnetic induction studies at archaeological sites in southwestern Jordan, in Journal of Environmental and Engineering Geophysics 8, pp. 209–215.Google Scholar
  215. Won and Elena I. Novikova, 2000, Electromagnetic response of an earth having a continuous conductivity variation in depth, Journal of Environmental and engineering geophysics, vol.5, issue 3, pp. 37/44.Google Scholar
  216. Xiong Z., 1992, Electromagnetic modeling of three dimensional structures by the method of system iteration using integral equations, Geophysics 57, pp. 1556–1561.Google Scholar
  217. Xiong Z., Tripp A., 1995, A block iterative algorithm for 3D electromagnetic modeling using integral equations with symmetrized substructures, in Geophysics 60, pp. 291–295.Google Scholar
  218. Zhang, Z., Liu, Q., 2001. Two nonlinear inverse methods for electromagnetic induction measurements, IEEE Geoscience and Remote Sensing 39 (6), 1331–1339.Google Scholar
  219. Zhang, J., Manckie, R. L. And Madden, T. R., 3_D resistivity forward modelling and inversion using conjugate gradients, Geophysics, 60, 1313–1325, 1995.Google Scholar
  220. Zhdanov M., 2010, Electromagnetic geophysics: Notes from the past and the road ahead, in Geophysics, vol. 75, NO.5, pp. 75A49–75A66.Google Scholar
  221. Zohdy, A.A.R., A new method for the automatic interpretation of Schlumberger and Wenner sounding curves, Geophysics, 54 (2), 245–253, 1989.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of MoliseCampobassoItaly
  2. 2.ITABC (CNR)MonterotondoItaly

Personalised recommendations