Tribology and Lubrication of Solids

  • Sergey F. ErmakovEmail author
  • Nikolai K. Myshkin
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 267)


We meet friction processes quite often in everyday life. As for instance, when we move bodies relative to each other ( kinetic friction) or try to put in motion various bodies at rest (static friction).


  1. 1.
    B.N.J. Persson, Sliding Friction: Physical Principles and Applications (Springer, Berlin, 2000), p. 516Google Scholar
  2. 2.
    N.K. Myshkin, C.K. Kim, M.I. Petrokovets, Introduction to Tribology (CMG, Seoul, 1997), p. 292Google Scholar
  3. 3.
    N.K. Myshkin, A.I. Sviridenok, D.V. Tkachuk, New Tendencies in Tribology in Relation to the Scientific Heritage of I.V. Kragel’skii, J. Friction Wear 29(4), 251–258 (2008)Google Scholar
  4. 4.
    K.C. Ludema, Friction, Wear, Lubrication: A Textbook in Tribology (CRC Press Inc., Boca Raton, 1996), p. 257Google Scholar
  5. 5.
    V.A. Belyi, K.C. Ludema, N.K. Myshkin (ed.), Tribology in the USA and the Former Soviet Union (Allerton Press, NY, 1994), p. 456Google Scholar
  6. 6.
    I.V. Kragelsky, V.V. Alisin, N.K. Myshkin, M.I. Petrokovets (ed.), Tribology—Lubrication, Friction, and Wear, Handbook (PEP Publishers, London, 2001) p. 948Google Scholar
  7. 7.
    P.N. Bogdanovich, V.Y. Prushak, Friction and Wear in Machines (Vysheishaya Shkola, Minsk, 1999), p. 374 (in Russian)Google Scholar
  8. 8.
    N.K. Myshkin, I.G. Goryacheva, Tribology: Trends in the Half-Century Development, J. Friction Wear 37(6), 513–616 (2017)Google Scholar
  9. 9.
    Y. Kimura, K. Nakano, T. Kato, S. Morishita, Control of friction coefficient by applying electric fields across liquid crystal boundary films. Wear 175, 143–149 (1994)CrossRefGoogle Scholar
  10. 10.
    F.P. Bowden, D. Tabor, The Friction and Lubrication of Solids (Clarendon Press, Oxford, 1964), p. 544Google Scholar
  11. 11.
    A.P. Semenov, Antifriction materials: experience of application and perspectives. Trenie Smazka Mash. Mekhan. 12, 21–36 (2007) (in Russian)Google Scholar
  12. 12.
    A.T. Volochko, Antifriction properties of composite aluminum materials under liquid and boundary friction. J. Friction Wear 26(6), 67–72 (2005)Google Scholar
  13. 13.
    R.N. Zaslavskii, Perspectives of tribopolymer—producing compounds for lubrication material production. Trenie Smazka Mash. Mekhan. 3, 21–33 (2006) (in Russian)Google Scholar
  14. 14.
    P.A. Rebinder, E.D. Shchukin, Surface phenomena in solids during the course of their deformation and failure. Sov. Phys. Usp. 15, 533–554 (1973) (in Russian)Google Scholar
  15. 15.
    D.N. Garkunov, Triboengineering (Mashinostroenie, Moscow, 1989), p. 328 (in Russian)Google Scholar
  16. 16.
    A.S. Akhmatov, Molecular Physics of Boundary Friction (Fizmatgiz, Moscow, 1963), p. 472 (in Russian)Google Scholar
  17. 17.
    V.A. Belyi, A.I. Sviridenok, Actual directions of development of study in the region of friction and wear. Sov. J. Friction Wear 8(1), 1–16 (1987)Google Scholar
  18. 18.
    A.P. Semenov, High-temperature solid lubricating substances. J. Friction Wear 28(4), 401–407 (2007)CrossRefGoogle Scholar
  19. 19.
    A.B. Vipper, V.L. Lashkhi, Y.A. Mikutenok, Effect of friction modificators on engine oil properties. Sov. J. Friction Wear 2(5), 55–58 (1981)Google Scholar
  20. 20.
    T.A. Lobova, E.A. Marchenko, Interaction between friction surfaces and lubricating materials of the 2H–MoS2 type. J. Friction Wear 29(4), 295–301 (2008)CrossRefGoogle Scholar
  21. 21.
    V.L. Lashkhi, A.B. Vipper, V.V. Kulagin, Oil-soluble organic compound of molibdenum—additives to lubricating oils. Khimiya i Tekhnologiya Toplivi Masel 1, 56–58 (1984) (in Russian)Google Scholar
  22. 22.
    N.M. Reniver, J. Hampshiere, V.C. Fox, Advantages of using self-lubricating, hard, wear-resistant MoS2–based coating. Surf. Coat. Techn. 142–144, 67–77 (2001)CrossRefGoogle Scholar
  23. 23.
    S. Watanabe, J. Noshiro, S. Miyake, Tribological characteristics of WS2/MoS2 solid lubricating multilayer films. Surf. Coat. Technol. 183, 347–351 (2004)CrossRefGoogle Scholar
  24. 24.
    C. Donnet, A. Erdemir, Historical developments and new trends in tribological and solid lubricant coatings. Surf. Coat. Technol. 180–181, 76–84 (2004)CrossRefGoogle Scholar
  25. 25.
    D.C. Teer, New solid lubricant coatings. Wear 251, 1068–1074 (2001)CrossRefGoogle Scholar
  26. 26.
    T.A. Lobova, E.A. Marchenko, Tribological properties of W(Mo)Se2–Ga/In coatings. Trenie Smazka Mash. Mekhan. 11, 27–31 (2006) (in Russian)Google Scholar
  27. 27.
    T.A. Lobova, E.A. Marchenko, Modified solid lubricating coatings on tungsten diselenide. J. Friction Wear 28(2), 193–199 (2007)CrossRefGoogle Scholar
  28. 28.
    V.N. Puchkov, A.P. Semenov, V.G. Pavlov, Solid lubricants: experience of application and perspectives. Trenie Smazka Mash. Mekhan. 11, 36–46 (2007) (in Russian)Google Scholar
  29. 29.
    W.J. Bartz, X. Jinfen, Wear behaviour and failure of bonded solid lubricants. Wear 148(1), 231–246 (1991)Google Scholar
  30. 30.
    T. Shimizu, A. Iwabuchi, H. Mifune, K. Kishi, M. Arita, The frictional properties of a spray bonded MoS2/Sb2O3 film under the fretting in vacuum. Lubr. Eng. 52(12), 943–948 (1996)Google Scholar
  31. 31.
    A.A. Zuev, Antifriction and antiwear characteristics of silid-lubricant components from chromium and selenium disulfide. J. Friction Wear 13(4), 131–133 (1992)Google Scholar
  32. 32.
    N. Stephanolopulos, V. Bellido-Gonzalez, J. Hampshire, D.G. Teer, Tribological study of optimized MoS2 coatings on tool steel specimen pre-coated with TiN. Tribologic et Inginierie des Surfacts (Journees d’etudes, 1995). STF, SIRPE, 57–66 (1996)Google Scholar
  33. 33.
    O.P. Parenago, G.N. Kuz’mina, D.V. Terekhin, Mechanism of MoS3 triboactive particle formation, in Proceedings of International Scientific and Technical Conference “Polycomtrib–2011” (IMMS NANB, Gomel, 2011), pp. 170–171Google Scholar
  34. 34.
    V.G. Novitskii, V.P. Gavrilyuk, D.D. Panasenko, N.A. Kal’chuk, V.Ya. Khoruzhii, The effect of lubricating material and thermal treatment on the resulting subsurface layers and wear resistance of 40X steel in sliding friction. J. Friction Wear 23(2), 82–86 (2002)Google Scholar
  35. 35.
    A.T. Volochko, G.L. Tsarev, Properties of powder composite materials with lead and graphite. Izv. Akad. Nauk BSSR, Ser. Fiz. Tekh. Nauk. (1), 12–16 (1989) (in Russian)Google Scholar
  36. 36.
    B.N. Arzamasov, T.V. Solov’eva, A Handbook on Construction Materials (Mos. Gos. Tekh. Univ., Moscow, 2005), pp. 147–172 (in Russian)Google Scholar
  37. 37.
    A.P. Semenov, M.V. Nozhenkov, About mechanism of lubricating action of solid antifriction materials. Sov. J. Friction Wear 5(3), 16–22 (1984)Google Scholar
  38. 38.
    J. Congrad, Alignment of Nematic Liquid Crystals and Their Mixtures (Gordon and Breach, London, 1982), p. 104Google Scholar
  39. 39.
    A.A. Markov, Y.V. Lun’kov, T.N. Nazarova, V.K. Gusev, Experimental study of adsorption influence of lubricating oils on wear-resistance of metals. J. Friction Wear 5(3), 123–126 (1984)Google Scholar
  40. 40.
    D. Bobrov, About friction, Graphite and nanotechnologies. Nauka i zhizn’ 2, 97–100 (2008) (in Russian)Google Scholar
  41. 41.
    M. Luty, G.A. Kostyukovich, A.A. Skaskevich, V.A. Struk, O.V. Kholodilov, Methods of creating of lubricating materials with nanomodifiers. J. Friction Wear 23(4), 48–59 (2002)Google Scholar
  42. 42.
    S.P. Zharinov, Fluorine-containing surfactants for wear-resistant coatings and lubricants. J. Friction Wear 20(1), 86–93 (1999)Google Scholar
  43. 43.
    Yu. Podgurskas, R. Rukuiza, V.A. Gubanov, P.E. Troichanskaya, Influence of fluoroligomeric materials on operation conditions of precision and sealing friction pairs. J. Friction Wear 21(1), 51–57 (2000)Google Scholar
  44. 44.
    N.K. Myshkin, A.I. Sviridenok, K. Fridrikh, Development of tribology of polymer materials, in Proceedings of International Scientific and Technical Conference “Polycomtrib–2011” (IMMS NANB, Gomel, 2011), pp. 3–4Google Scholar
  45. 45.
    A.P. Krasnov, O.V. Afonicheva, V.B. Bazhenova, V.A. Mit, Tribochemical processes and nano-dimension in polymer systems, in Proceedings of International Scientific and Technical Conference “Polycomtrib–2009” (IMMS NANB, Gomel, 2009), pp. 4–5Google Scholar
  46. 46.
    A.P. Krasnov, N.V. Tokareva, V.K. Popov et al., Friction and properties of Ultrahigh-Molecular Weight Polyethylene (UHMWPE), finished by supercritical carbon dioxide. J Friction Wear 24(4), 429–435 (2003)Google Scholar
  47. 47.
    Y.M. Pleskachevskii, V.E. Agabekov, Achievements of chemistry as fundamental base of material science, in Proceedings of International Scientific and Technical Conference “Polycomtrib–2011” (IMMS NANB, Gomel, 2011), pp. 5–7Google Scholar
  48. 48.
    V.P. Sel’kin, A.V. Makarenko, A.Z. Skorokhod et al., The effect of radiation-induced cross-linking on the wear rate of polyvinylidene fluoride during friction in a liquid. J. Friction Wear 29(1), 45–49 (2008)Google Scholar
  49. 49.
    I.V. Pogotskaya, S.A. Chizhik, T.A. Kuznetsova, Statistical power spectroscopy of nanostructured Langmuir–Blodgett films, in Proceedings of International Scientific and Technical Conference “Polycomtrib–2011” (IMMS NANB, Gomel, 2011), pp. 181–182Google Scholar
  50. 50.
    S.S. Pesetskii, S.P. Bogdanovich, N.K. Myshkin, Tribological behavior of nanocomposites produced by the dispersion of nanofillers in polymer melts. J. Friction Wear 28(5), 457–475 (2007)CrossRefGoogle Scholar
  51. 51.
    M.G. Ivanov, V.V. Kharlamov, V.M. Buznik et al., Tribological properties of the grease containing polytetrafluorethylene and ultrafine diamonds. J. Friction Wear 25(1), 89–92 (2004)Google Scholar
  52. 52.
    Forum—The Newest Technologies of Struggle with Friction and Wear (Vladforum, Vladivostok).
  53. 53.
    A.A. Okhlopkova, Properties of polytetrafluorethylene modified by ultradispersed diamonds. Mat. Tekhnol. Instrumenty 4(3), 60–63 (1999) (in Russian)Google Scholar
  54. 54.
    A.M. Malevich, E.V. Ovchinnikov, YuS Boiko, V.A. Struk, Tribological properties of PTFE modified by ultra-dispersed clusters of synthetic carbon. J. Friction Wear 19(3), 71–74 (1998)Google Scholar
  55. 55.
    A.N. Popov, V.P. Kazachenko, A.V. Rogachev, Structure and triboengineering properties of polytetrafluorethylene coatings, dispersly-strenghtening by nanoparticles formed from active gaseous phase, in School on Plasmochemistry for Young Scientists of Russia and Union of Independent Countries (RAN–IGKhTU, Moscow, 2001), pp. 1–3Google Scholar
  56. 56.
    W.X. Chen, F. Li, G. Han, J.B. Xia, L.Y. Wang, J.P. Tu, Z.D. Xu, Tribological behavior of carbon-nanotube-filled PTFE composites. Tribol. Lett. 15, 275–278 (2003)CrossRefGoogle Scholar
  57. 57.
    I.I. Vasiliyev, A study of triboengineering characteristics of fine fullerene films. J. Friction Wear 25(4), 61–64 (2004)Google Scholar
  58. 58.
    V.I. Komarova, A.I. Komarov, Effect carbon nanotubes introduced in lubricant on triboengineering properties and structure of MDO coatings, in Proceedings of International Scientific and Technical Conference “Polycomtrib–2011” (IMMS NANB, Gomel, 2011), pp. 117–118Google Scholar
  59. 59.
    B.V. Ginzburg, D.G. Tochil’nikov, Effect of fullerene-containing additives on the bearing capacity of fluoroplastics under friction. Tech. Phys. 46(2), 249–253 (2001)Google Scholar
  60. 60.
    P.A. Vityaz’, V.I. Zhornik, V.A. Kukareko, A.I. Kamko, Formation of wear-resistant surface structures and mechanism of their damage at friction with lubricant modified by ultradispersed diamond–graphite additives. Part I. Tribological behavior. J. Friction Wear 27(1), 55–61 (2006)Google Scholar
  61. 61.
    P.A. Vityaz’, V.I. Zhornik, V.A. Kukareko, A.I. Kamko, Formation of wear-resistant surface structures and mechanism of their damage at friction with lubricant modified by ultradispersed diamond–graphite additives. Part II. Model of destruction. J. Friction Wear 27(2), 67–70 (2006)Google Scholar
  62. 62.
    N.F. Dmitrichenko, R.G. Mnatsakanov, O.A. Mikosyanchik, A.I. Kushch, Wear kinetics of contact surfaces with use of C–60 fullerene additive to motor oil. J. Friction Wear 30(6), 399–403 (2009)CrossRefGoogle Scholar
  63. 63.
    H. Hirai, K. Kondo, N. Yoshizawa, M. Shiraishi, C–60 fullerene. Appl. Phys. Lett. 64, 1797–1799 (1994)CrossRefGoogle Scholar
  64. 64.
    O.G. Epanchitsev, A.S. Zubchenko, Y.D. Tret’kav, Shock wave synthesis of diamonds of micron size from fullerenes. Doklady Ross. Akad. Nauk 340(2), 201–203 (1995)Google Scholar
  65. 65.
    O.F. Kireenko, B.M. Ginzburg, V.P. Bulatov, The effect of fullerene on the tribological characteristics of plastic greases. J. Friction Wear 23(3), 64–68 (2002)Google Scholar
  66. 66.
    B.M. Ginzburg, O.F. Kireenko, D.G. Tochil’nikov, V.P. Bulatov, Formation of antiwear structure upon sliding friction of steel along copper in the presence of fullerene or fullerene carbon-black. Pis’ma Zh. Tekh. Fiz. 21(23), 38–42 (1995)Google Scholar
  67. 67.
    A.A. Shepelevekii, L.A. Shibaev, B.M. Ginzburg, V.P. Bulatov, Effect of C–60 fullerene on lubricating process in steel–copper trubopair clearance. Zh. Prikl. Khim. 72(7), 1198–1203 (1999)Google Scholar
  68. 68.
    V.G. Savkin, T.G. Chmykhova, I.O. Delikatnaya, E.N. Volnyanko, The influence of external effects on the structurization of lubricating materials. J. Friction Wear 28(6), 557–560 (2007)CrossRefGoogle Scholar
  69. 69.
    V.G. Savkin, V.A. Smurugov, T.G. Chmykhova, I.O. Delikatnaya, Wetting and spreading of oils containing surfactants and superdispersed fillers. J. Friction Wear 25(4), 35–41 (2004)Google Scholar
  70. 70.
    E.F. Kudina, D.N. Kushnerov, S.I. Tyurina, T.G. Chmykhova, Effect of dispersed organic silica on the tribological behavior of greases. J. Friction Wear 24(5), 77–80 (2003)Google Scholar
  71. 71.
    E.N. Volnyanko, S.F. Ermakov, V.A. Smurugov, Influence of a lubricant modified with fine-dispersed β-sialon on a steel surface structure under friction loading. J. Surf. Invest. X-ray, Synchrotron Neutron Tech. 2(5), 738–743 (2008)CrossRefGoogle Scholar
  72. 72.
    V.I. Kolesnikov, N.A. Myasnikova, E.N. Volnyanko, S.F. Ermakov, A.P. Sychev, A.A. Sychev, Lubricants with ceramic nanoadditives and wear-resistant surface structures of heavy-duty junctional joints. Russ. Eng. Res. 31(5), 454–457 (2011)CrossRefGoogle Scholar
  73. 73.
    K.N. Dolgopolov, D.N. Lyubimov, A.G. Ponomarenko et al., The structure of lubricating layers appearing during friction in the presence of additives of mineral friction modifiers. J. Friction Wear 30(5), 377–380 (2009)CrossRefGoogle Scholar
  74. 74.
    D.N. Lyubimov, K.N. Dolgopolov, A.T. Kozakov, A.V. Nikol’skii, Improvement of exploitation properties of lubricating materials by use of clay mineral additives, in Proceedings of International Scientific and Technical Conference “Polycomtrib–2011” (IMMS NANB, Gomel, 2011), pp. 144–145Google Scholar
  75. 75.
    R.N. Zaslavskii, V.D. Asrieva, Y.S. Zaslavskii, About mechanism of antiwear action and results of tests of plastic lubricant with tribopolymerformating stiffener. Sov. J. Friction Wear 2(1), 96–101 (1981)Google Scholar
  76. 76.
    V.G. Lapteva, E.N. Dokuchaeva, V.F. Kaplina, Wear resistance of technological equipment friction pairs at the use of tribopolymerformating lubricating materials. Sov. J. Friction Wear 6(1), 77–83 (1985)Google Scholar
  77. 77.
    L.S. Pinchuk, V.A. Gol’dade, Electret Materials in Engineering (Infotribo, Gomel, 1998), p. 288Google Scholar
  78. 78.
    A.A. Silin, Friction in cosmic vacuum. Trenie Iznos 1(1), 168–178 (1980)Google Scholar
  79. 79.
    A.A. Silin, About behavior and stability of artificially activated tribosystems. Trenie Iznos Smaz. Mater. 2, 296–299 (1985)Google Scholar
  80. 80.
    D.N. Garkunov (ed.), Selective Transfer in Hardly Loaded Friction Joints (Mashinostroenie, Moscow, 1982), p. 207Google Scholar
  81. 81.
    V.N. Litvinov, N.M. Mikhin, N.K. Myshkin, Physico-Chemical Mechanics of Selective Transfer at Friction (Nauka, Moscow, 1979), p. 187Google Scholar
  82. 82.
    M.L. Rybakova, L.I. Kuksenova, Structure and Wear-Resistance of Metal (Mashinostroenie, Moscow, 1982), p. 212Google Scholar
  83. 83.
    G.G. Chigarenko, A.G. Ponomarenko, A.S. Burlov, A.G. Chigarenko, Efficient additives on the basis of azo-(azomethine) coordination compounds of transition metals. J. Friction Wear 28(4), 377–382 (2007)CrossRefGoogle Scholar
  84. 84.
    G.G. Chigarenko, A.G. Ponomarenko, A.S. Burlov et al., Effect of chemical structure of coordination compounds of transient metals on lubricating characteristics of oils. J. Friction Wear 27(2), 92–97 (2006)Google Scholar
  85. 85.
    S.F. Ermakov, V.G. Rodnenkov, E.D. Beloenko, B.I. Kupchinov, Liquid Crystals in Engineering and Medicine (Minsk, Asar, 2002), p. 412Google Scholar
  86. 86.
    V.I. Kolesnikov, S.F. Ermakov, A.P. Sychev, Triboinduced adsorption of liquid-crystal nanomaterials under friction interaction of solids. Dokl. Phys. 54(6), 269–272 (2009)CrossRefGoogle Scholar
  87. 87.
    V.I. Kolesnikov, M.A. Savenkova, S.B. Bulgarevich et al., Investigation of the triboengineering characteristics of plastic railway greases with inorganic polymeric additives. J. Friction Wear 29(3), 200–204 (2008)CrossRefGoogle Scholar
  88. 88.
    V.I. Kolesnikov, S.F. Ermakov, F. Daniel et al., Synthesis and study of triboengineering characteristics of a new nanosize ceramic nickel phosphoromolybdate additive to greases. J. Friction Wear 31(6), 426–432 (2010)Google Scholar
  89. 89.
    V.I. Kolesnikov, A.T. Kozakov, Y.F. Migal, Study of friction and wear in the wheel-rail system by X-ray electron and auger-electron spectroscopy and quantum chemistry. J. Friction Wear 31(1), 11–22 (2010)Google Scholar
  90. 90.
    P.A. Rebinder, Physico-chemical Mechanics: Selected Papers (Nauka, Moscow, 1979), p. 381Google Scholar
  91. 91.
    I.A. Buyanovskii, Application of the kinetic approach to description of the process of boundary lubrication. J. Friction Wear 24(3), 72–80 (2003)Google Scholar
  92. 92.
    A.V. Chichinadze, I.A. Buyanovskii, B.E. Gurskii, The diagram of transitions and the screening effect of lubricating layer. J. Friction Wear 23(3), 90–97 (2002)Google Scholar
  93. 93.
    D. Moore, Principles and Applications of Tribology (Pergamon Press, Oxford, 1975), p. 488Google Scholar
  94. 94.
    S.F. Ermakov, V.P. Parkalov, V.A. Shardin, R.A. Shuldykov, Effect of liquid-crystal additives on tribological performance of dynamically contacting surfaces and mechanism of their friction. J. Friction Wear 25(2), 87–91 (2004)Google Scholar
  95. 95.
    G. Biresaw (ed.), Tribology and the Liquid-Crystalline State (American Chemical Society, Symposium Series, 1990) (441), p. 130Google Scholar
  96. 96.
    A.S. Sonin, Introduction in Liquid Crystal Physics (Nauka, Moscow, 1983), p. 104Google Scholar
  97. 97.
    I.A. Buyanovskii, Y.N. Drozdov, Z.N. Ignat’eva et al., Effect of orienting coatings on the apparent activation energy of boundary film destruction. J. Friction Wear 28(1), 12–18 (2007)Google Scholar
  98. 98.
    I.A. Buyanovskii, V.A. Levchenko, Z.N. Ignat’eva, V.N. Matveenko, Nanostructured carbon coating-orientant and its interaction with boundary lubricating layers. J. Friction Wear 30(6), 415–419 (2009)Google Scholar
  99. 99.
    I.A. Buyanovskii, Z.N. Ignat’eva, V.A. Levchenko, V.N. Matveenko, Orientation ordering of boundary layers and lubricity of oils. J. Friction Wear 29(4), 282–287 (2008)Google Scholar
  100. 100.
    S. Morishita, K. Nakano, Y. Kimura, Electroviscous effect of nematic liquid crystals. Tribol. Int. 26, 399–403 (1993)CrossRefGoogle Scholar
  101. 101.
    Y. Kimura, K. Nakano, S. Morishita, Liquid crystal as potential lubricant—possibility of active control of friction coefficient, in Proceedings of the 6th Nordic Symposium on Tribology, vol. 2 (1994), pp. 313–322Google Scholar
  102. 102.
    V.E. Fertman, Magnetic Fluids: A Textbook (Minsk, Vysheishaya Shkola, 1988), p. 184Google Scholar
  103. 103.
    A. Mishchak, tribological properties of ferrofluid. J. Friction Wear 27(3), 81–86 (2006)Google Scholar
  104. 104.
    A.N. Bolotov, S.N. Grigor’ev, I.V. Gorlov, Magnetopowder method of abrasive medium confinement. Sov. J. Friction Wear 10(6), 91–93 (1989)Google Scholar
  105. 105.
    A.N. Bolotov, K.K. Sozontov, D.V. Orlov, Role of structural components of machine oil in boundary lubrication conditions. Sov. J. Friction Wear 12(5), 44–49 (1991)Google Scholar
  106. 106.
    A.N. Bolotov, N.V. Lochagin, YuO Mikhalev, Magnetic field role at friction of surfaces, Lubricated by machine oil. Sov. J. Friction Wear 9(5), 80–86 (1988)Google Scholar
  107. 107.
    A.N. Bolotov, V.V. Novikov, O.O. Novikova, Friction of a structured magnetic fluid sliding over a solid surface. J. Friction Wear 27(4), 46–51 (2006)Google Scholar
  108. 108.
    N.B. Demkin, A.N. Bolotov, Self-unloading magnetic bearings. Sov. J. Friction Wear 6(1), 1–6 (1985)Google Scholar
  109. 109.
    E.D. Beloenko, YuM Chernyakova, L.S. Pinchuk, Tribological foundation of hondroprotection method with the help of blood auto-serosity and hyaluronates. Dokl. Nat. Akad. Nauk Belarusi 51(2), 72–75 (2007)Google Scholar
  110. 110.
    L.S. Pinchuk, Y.M. Chernyakova, V.A. Gol’dade, The tribology of joints and problems of modern orthopedics. J. Friction Wear 29(3), 224–233 (2008)Google Scholar
  111. 111.
    YuM Chernyakova, ZhV Kadolich, L.S. Pinchuk et al., Electromagnetic field effect on tribological characteristics of synovial fluid. Trenie Iznos 24(6), 50–55 (2003)Google Scholar
  112. 112.
    L.S. Pinchuk, YuM Chernyakova, S.F. Ermakov, Tribophysics of Synovial Fluid (Minsk, Belaruskaya Navuka, 2010), p. 382Google Scholar
  113. 113.
    L.S. Pinchuk, E.A. Tsvetkova, Z.V. Kadolich, Electromagnetic field effect on friction in endoprostheses of joints. J. Friction Wear 22(5), 69–73 (2001)Google Scholar
  114. 114.
    Y. Yamamoto, J. Yagi, H. Higaki, Effect of electric field externally applied on friction and wear characteristics. Trans. Jpn. Soc. Mech. Eng. 57C, 2734–2739 (1991)CrossRefGoogle Scholar
  115. 115.
    A. Takeuchi, M. Sato, H. Aoki, Effect of electric current on advance of running-in. Japanece J. Tribol. 35, 1385–1395 (1990)Google Scholar
  116. 116.
    S.C. Tung, S.S. Wang, In-situ electro-charging for friction reduction and wear resistant film formation. Tribol. Trans. 34, 479–488 (1991)CrossRefGoogle Scholar
  117. 117.
    E.V. Korobko, R.G. Gorodkin, V.V. Mtlnichenko, Boundary effects at ERF spreading in electric field. Int. J. Modern Phys. B 10(23), 3357–3365 (1996)CrossRefGoogle Scholar
  118. 118.
    E.V. Korobko, Electrostructured (Electroreological) Fluids: Hydrodynamic Peculiarities and Possibilities of Use (Minsk, ITMO, 1996), p. 189Google Scholar
  119. 119.
    V.L. Basinyuk, E.V. Korobko, E.I. Mardosevich et al., Tribotechnical parameter control of friction interfaces. J. Friction Wear 24(6), 96–102 (2003)Google Scholar
  120. 120.
    V.I. Komarova, V.L. Basinyuk, A.I. Komarov, N.E. Senokosov, New composite friction pairs of friction. Nauka Proizvodstvu 19(6), 52–53 (1999)Google Scholar
  121. 121.
    V.A. Belyi, C. Ludema, N.K. Myshkin (ed.), Tribology. Studies and Applications: The Experience in the USA and CIS States (Moscow, 1993), p. 432 (in Russian)Google Scholar
  122. 122.
    S. Ermakov, A. Beletskii, O. Eismont, V. Nikolaev, Liquid Crystals in Biotribology. Synovial Joint Treatment (Springer, Heidelberg, 2016), p. 211Google Scholar
  123. 123.
    B.V. Deryagin, G.K. Strakhovskii, D.A. Malysheva, Measurement of viscosity the boundary (surface) layers of liquids by the method of deflation. J. Exp. Theor. Phys. 16(2), 171–182 (1946) (in Russian)Google Scholar
  124. 124.
    V.V. Karasev, B.V. Deryagin, Measurement of viscosity the boundary (surface) layers of liquids by the method of deflation. Colloid J. 15, 1235–1241 (1953) (in Russian)Google Scholar
  125. 125.
    B.A. Altoiz, Measurement of viscosity the boundary (Surface) layers of liquids by the method of deflation, in Physics of Air-Borne Dispersed Systems, 21 edn. (Vysheishaya Shkola, Kiev, 1981), pp. 35–40 (in Russian)Google Scholar
  126. 126.
    L.M. Blinov, V.G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials. Series: Partially Ordered Systems (Springer, Berlin, 1996), p. 296Google Scholar
  127. 127.
    B.A. Altoiz, Study of the structural characteristics of the boundary (LCD) nitrobenzene layer on the surface of the quartz, in Problems of Physics of Form Appearance and Phase Transformations (Kalinin, 1981), pp. 80–86 (in Russian)Google Scholar
  128. 128.
    Y.M. Popovskii, B.A. Altoiz, Study of structural regularity boundary of multimolecular layers of nitrobenzene formed on liofilizirovanny solid support. Colloid J. 43(6), 1177–1179 (1981) (in Russian)Google Scholar
  129. 129.
    B.V. Deryagin, B.A. Altoiz, I.I. Nikitenko, Study of the structural characteristics epitropic LCD phases of some organic liquids. Trans. USSR Acad. Sci. 300(2), 377–380 (1988) (in Russian)Google Scholar
  130. 130.
    I.A. Klejman, I.E. Tomashevskii, Features structural regularity near the boundary between the liquid crystal substrate. Crystallography 29(6), 1214–1215 (1984) (in Russian)Google Scholar
  131. 131.
    B.A. Altoiz, AYu. Popovskii, The study wall of ordering in liquid crystals freeze solid substrate. Colloid J. 19, 419–423 (1987) (in Russian)Google Scholar
  132. 132.
    B.V. Deryagiin, N.V. Churaev, V.M. Mullur, Surface Forces (Nauka, Moscow,1987), p. 202 (in Russian)Google Scholar
  133. 133.
    B.V. Deryagin, N.V. Churaev, Trans. USSR Acad. Sci. 207(3), 572–575 (1972) (in Russian)Google Scholar
  134. 134.
    B.V. Deryagin, N.V. Churaev, Croat Chem. Acta. 50(4), 187–195 (1977) (in Russian)Google Scholar
  135. 135.
    J.N. Israelachvili, E.E. Adams, Measurement of forces between two mica surfaces in aqueous electrolyte solution in the range 0–100 nm. J. Chem. Soc. Faraday Trans. 74(4), 975–1001 (1978)CrossRefGoogle Scholar
  136. 136.
    S.F. Ermakov, Tribology of Liquid-Crystalline Nanomaterials and systems (Belarusian Nauka, Minsk, 2012), p. 380 (in Russian)Google Scholar
  137. 137.
    E.L. Aero, N.M. Bessonov, Micromechanics of structural liquid layers between solids in contact, in Itogi Nauki I Tekhniki. Ser.: Mechanics of Fluids and Gases, vol. 23. (VINITI, Moscow, 1989), pp. 237–315 (in Russian)Google Scholar
  138. 138.
    N.K. Christenson, D.W.R. Gruen, R.G. Horn, J.N. Israelachvili, Structuring in liquid alcanes between solid surfaces: force measurements and mean-field theory. J. Chem. Phys. 87(3), 1834–1841 (1987)CrossRefGoogle Scholar
  139. 139.
    D.I.C. Chan, R.G. Horn, The drainage of thin liquid films between solid surfaces. J. Chem. Phys. 83(10), 5311–5324 (1985)Google Scholar
  140. 140.
    J.L. Parker, H.K. Christenson, Measurements of the forces between a metal surface and mica across liquids. J. Chem. Phys. 88(12), 8013–8014 (1988)CrossRefGoogle Scholar
  141. 141.
    H.K. Christenson, DLVO (Derjaguin–Landau–Verwey–Overbeek) theory and salvation forces between mica surfaces in polar and hydrogen-bonding liquids. J. Chem. Soc. Faraday Trans. 80(7), 1933–1946 (1984)CrossRefGoogle Scholar
  142. 142.
    H.K. Christenson, R.G. Horn, Direct measurement of the force between solid surfaces in a polar liquid. Chem. Phys. Lett. 98(1), 45–48 (1983)CrossRefGoogle Scholar
  143. 143.
    R.G. Horn, J.N. Israelachvili, E. Perez, Forces due to structure in a thin liquid crystal films. J. Phys. 42(1), 39–52 (1981)CrossRefGoogle Scholar
  144. 144.
    K. Bartolino, G. Durand, Mechanical behavior of the smectic phases near the phase transitions. Solid State Commun. 54(4), 301–304 (1985)CrossRefGoogle Scholar
  145. 145.
    P. Oswald, Fluage en Compression d’un Smectique. J. Acad. Sci. Ter. 2. 296(18), 1385–1388 (1983)Google Scholar
  146. 146.
    J.M. Pochan, P.T. Erhardt, Shear-induced texture changes in cholesteric liquid-crystal mixtures. Phys. Rev. Lett. 27(12), 790–791 (1971)CrossRefGoogle Scholar
  147. 147.
    J.M. Pochan, D.G. Marsf, Mechanism of shear-induced structural changes. J. Chem. Phys. 57(3), 1193–1200 (1972)CrossRefGoogle Scholar
  148. 148.
    P.P. Erhardt, J.M. Pochan, W.C. Richards, Normal stress effects in cholesteric mesophases. J. Chem. Phys. 57(9), 3596–3601 (1972)CrossRefGoogle Scholar
  149. 149.
    T. Koraka, Note on the normal stress effect in the solution of rodlike macromolecules. J. Chem. Phys. 30(6), 1566–1567 (1959)CrossRefGoogle Scholar
  150. 150.
    J.G. Kirkwood, Rec. Trav. Chim. 68, 649 (1949)CrossRefGoogle Scholar
  151. 151.
    A.C. Eringen, Theory of micropolar fluid. J. Math. and Mech. 36(1), 1–16 (1966)Google Scholar
  152. 152.
    P. Oswald, M. Kleman, Theorie de Lubrication Appliquee aux Smectiques. C. R. Acad. Sci. Ser. 2. 294(17), 1057–1060 (1982)Google Scholar
  153. 153.
    Orsay Group in Liquid Crystals, On some flow properties of smectic A. J. Physigue Cl, 305–313 (1975)Google Scholar
  154. 154.
    P.M. Leslie, Theory of Flow Phenomena in Liquid Crystals. Advances in Liquid Crystals, ed. by G.H. Brown (Academic Press, NY, 1979), p. 23Google Scholar
  155. 155.
    E.L. Aero, N.M. Bessonov, Hydrodynamic mode of operation of the elastic bearing is slipping boundary conditions in the viscosity. J. Friction Wear 13(1), 116–124 (1992)Google Scholar
  156. 156.
    J.A. Tichy, Lubrication theory for nematic liquid crystals. Tribol. Trans. 33(3), 363–370 (1990)Google Scholar
  157. 157.
    J.L. Ericksen, Continuum theory of nematic liquid crystals. Res. Mechanica. 21, 381–392 (1987)Google Scholar
  158. 158.
    A.S. Vasilevskaja, E.A. Dukhovoj, A.A. Silin, Effect of nematic ordering on sliding friction. Correspondence J. Tech. Phys. 12(12), 750–752 (1986) (in Russian)Google Scholar
  159. 159.
    B.V. Deryagin, The theory of boundary friction, in Progress of the Theory of Friction and Wear (Moscow, 1957), pp. 15–26 (in Russian)Google Scholar
  160. 160.
    E. Cosserat, F. Cosserat, Theorie des Corp Deformables (Hermann, Paris, 1909), p. 226Google Scholar
  161. 161.
    S.J. Alien, K.A. Kline, The effect of concentration in fluid suspension. Trans. Soc. Rheol. 12(3), 457–468 (1968)CrossRefGoogle Scholar
  162. 162.
    S.J. Alien, K.A. Kline, Lubrication theory for micropolar fluid. Trans. ASME. E 38(4), 646–656 (1971)CrossRefGoogle Scholar
  163. 163.
    J. Prakash, P. Sinha, Squeeze film theory for micropolar fluids. Trans. ASME. F 98(1), 139–144 (1976)CrossRefGoogle Scholar
  164. 164.
    J. Prakash, P. Sinha, Lubrication theory for micropolar fluids and its applications to a journal bearing. Int. J. Eng. Sci. 13, 217–232 (1975)Google Scholar
  165. 165.
    P. Sinha, Ch. Singh, Lubrication of rough surfaces. Int. J. Mech. Sci. 24(10), 619–633 (1982)CrossRefGoogle Scholar
  166. 166.
    R.A. Brand, Joint lubrication. Ch. 13. in The Scientific Basis of Orthopaedics, 2nd edn. (1987), pp. 373–386Google Scholar
  167. 167.
    S.F. Ermakov, Biomechanics of synovia in living joints. 1. Modern concepts of living joints friction, wear and lubrication. J. Friction Wear 14(6), 97–109 (1993)Google Scholar
  168. 168.
    H. Muir, P. Bullough, A. Maroudas, The distribution of collagen in human articular cartilage with some of its physiological implications. J. Bone Joint Surg. 52B, 554–563 (1970)Google Scholar
  169. 169.
    H. Lipshitz, R. Etheredge, M.J. Climcher, In vitro studies of the wear of articular cartilage. The wear characteristics of chemically modified articular cartilage when worn against a highly polished characterized stainless steel surface. J. Biomech. 13, 423–436 (1980)CrossRefGoogle Scholar
  170. 170.
    C. Weiss, L. Rosenberg, A.J. Helfet, An ultrastructural study of normal young adult human articular cartilage. J. Bone Joint Surg. 50A, 663 (1968)CrossRefGoogle Scholar
  171. 171.
    A. Maroudas, P. Bullough, S.A.V. Swanson, M.A.R. Freeman, The permeability of articular cartilage. J. Bone Joint Surg. 50B, 166 (1968)Google Scholar
  172. 172.
    A. Maroudas, H. Muir, The distribution of collagen and glycosaminoglycans in human articular cartilage and the influence on hydraulic permeability. Chem. Mol. Biol. Intercell. Matrix 3 (1970)Google Scholar
  173. 173.
    F.F. Jaffe, H.J. Mankin, C. Weiss, A. Zarins, Water binding in the articular cartilage of rabbits. J. Bone Joint Surg. 56A, 1031 (1974)CrossRefGoogle Scholar
  174. 174.
    F.K. Linn, Lubrication of joints in animals. Problems of friction ad lubrication. ASME Trans. 2, 141−153 (1969)Google Scholar
  175. 175.
    C.W. McCutchen, Boundary lubrication by synovial fluid: demonstration and possible osmotic explanation. Federat. Proceed. Lubric. Biomech. 25, 1061–1068 (1966)Google Scholar
  176. 176.
    P.S. Walker, J. Sikorski, D. Dowson et al., Behavior of synovial fluid on surfaces of articular cartilage: a scanning electron microscope study. Ann. Rheum. Dis. 28(1), 1–14 (1969)CrossRefGoogle Scholar
  177. 177.
    P.S. Walker, A. Unsworth, D. Dowson et al., Mode of aggregation of hyaluronic acid protein complex on the surface of articular cartilage. Ann. Rheum. Dis. 29, 591–602 (1970)CrossRefGoogle Scholar
  178. 178.
    P.S. Walker, B.L. Gold, Comparison of the bearing performance of normal and artificial human joints. Trans ASME. F 95(3), 333–341 (1973)Google Scholar
  179. 179.
    D. Dowson, A. Unsworth, V. Wright, Analysis of boosted lubrication in human joints. J. Mech. Eng. Sci. 12, 364–369 (1970)CrossRefGoogle Scholar
  180. 180.
    J.M. Mansour, V.C. Mow, On the natural lubrication of synovial joints: normal and degenerate. Trans. ASME F 99(2), 163–173 (1977)CrossRefGoogle Scholar
  181. 181.
    P.A. Torzilli, Mechanical response of articular cartilage to an oscillating load. Mech. Res. Commun. 11(1), 75–82 (1984)CrossRefGoogle Scholar
  182. 182.
    V. Wright, D. Dowson, J. Kerr, The structure of joints. IV. Articular cartilage. Int. Rev. Connect. Tissue Res. 6, 105–124 (1973)Google Scholar
  183. 183.
    V.C. Mow, J.M. Mansour, The nonlinear interaction between cartilage deformation and interstitial fluid flow. J. Biomech. 10(1), 31–39 (1977)CrossRefGoogle Scholar
  184. 184.
    A. Unsworth, D. Dowson, V. Wright, D. Koshal, The frictional behavior of human synovial joints. 2. Artificial joints. Trans. ASME F97(3), 377–382 (1975)Google Scholar
  185. 185.
    I.C. Clarke, R. Contini, R.M. Kenedi, Friction and wear studies of articular cartilage: a scanning electron microscope study. Trans. ASME F 97(3), 358–368 (1975)Google Scholar
  186. 186.
    A. Unsworth, D. Dowson, V. Wright, The frictional behavior of human synovial joints. Part 1. Natural joints. Trans. ASME F97(3), 369–376 (1975)Google Scholar
  187. 187.
    T.A. Prokhorova. O.V. Oganesjan, V.K. Mikhajlov. Problem of the mechanism of low friction of articular cartilages, friction, wear and lubricants, in Proceedings of the International Science Conference (Moscow, 1985), pp. 15−16 (in Russian)Google Scholar
  188. 188.
    V.K. Mow, Role of lubrication in biomechanical joints. J. Lubr. Technol. 91F(2), 320–328 (1969)CrossRefGoogle Scholar
  189. 189.
    V.N. Pavlova, Synovial Medium in Joints (Meditsina, Moscow, 1980), p. 296 (in Russian)Google Scholar
  190. 190.
    P.C. Seller, D. Dowson, V. Wright, The rheology of synovial fluid. Rheol. Acta. 10, 2–7 (1971)CrossRefGoogle Scholar
  191. 191.
    M.N. Pavlova, B.N. Kumanin, The ultrastructure of rubbing surfaces in a joint. Anat. Histol. Embryol. Arch. 8, 38–42 (1983) (in Russian)Google Scholar
  192. 192.
    H. Chikama, The role of the protein and the hyaluronic acid in the synovial fluid in animal joint lubrication. J. Jpn. Orthop. Ass. 59(5), 559–572 (1985)Google Scholar
  193. 193.
    W.H.J. Davis, S.L. Lee, L. Sokoloff, A proposed model of boundary lubrication by synovial fluid: structuring of boundary water. Trans. ASME J. Biomech. Eng. 101(3), 185–192 (1979)CrossRefGoogle Scholar
  194. 194.
    D.A. Swann, Macromolecules of Synovial Fluid. The Joints and Synovial Fluid, ed. by L. Sokoloff (New York, 1978), p. 374Google Scholar
  195. 195.
    D.A. Swann, E.L. Radin, M. Nazimiec et al., Role of hyaluronic acid in joint lubrication. Ann. Rheum. Dis. 33, 318–328 (1974)Google Scholar
  196. 196.
    D.A. Swann, R.B. Hendren R.B., E.L. Radin, The lubricating activity of synovial fluid glycoproteins. Arthritis Rheum. 24, 22 (1981)Google Scholar
  197. 197.
    D. Gvozdanovic, V. Wright, D. Dowson, Formation of lubricating monolayers at the cartilage surface. Ann. Rheum. Dis. 34, 100–106 (1975)CrossRefGoogle Scholar
  198. 198.
    B.I. Kupchinov, V.G. Rodnenkov, S.F. Ermakov et al. The problem of the mechanism of functioning of the joint as a rubbing body. Trans. Belarusian Acad. Sci. 29(5), 463−465 (1985) (in Russian)Google Scholar
  199. 199.
    B.I. Kupchinov, S.F. Ermakov, V.G. Rodnenkov, S.N. Bobrysheva, E.D. Beloenko, I.R. Voronovich, Y.M. Pleskachevskii, V.A. Belyi, Property of synovial medium to ensure the high antifriction of cartilages in joints of humans and animals, in Nauchnye otkrytiya (Scientific Discoveries) (Moscow, 1999), pp. 14−16Google Scholar
  200. 200.
    Pat. 5,238,929 US, A 61 К 31/56. Correction of tribology of arthritis-affected joints and medicine for its implementation/B.I. Koupchinov, S.F. Ermakov, E.D. Belojenko, V.G. Rodnenkov, V.N. Kestelman, N 779,490. Filed 22.10.91. Published 24.08.93Google Scholar
  201. 201.
    S.F. Ermakov, E.D. Beloenko, O.L. Eismont, Role of liquid crystals in tribological behavior of joint cartilages. J. Friction Wear 25(5), 31–35 (2004)Google Scholar
  202. 202.
    B.I. Kupchinov, S.F. Ermakov, V.G. Rodnenkov, Role of liquid crystals in the lubrication of living joints. Smart Mater. Struct. 2, 7–12 (1993)CrossRefGoogle Scholar
  203. 203.
    S.F. Ermakov, B.I. Kupchinov, E.D. Beloenko, Liquid crystalline components of synovia and their role in the joint tribology, in Proceedings of Symposium “Inzynieria Ortopedyczna i Protetyczna” (Belostok, 1997), pp. 125−131Google Scholar
  204. 204.
    B.I. Kupchinov, S.F. Ermakov, V.G. Rodnenkov, E.D. Beloenko, O.L. Eismont, Some results of studies in liquid-crystalline state of synovial lubricant in joints. J. Friction Wear 23(3), 69–75 (2002)Google Scholar
  205. 205.
    B.I. Kupchinov, S.F. Ermakov, V.G. Rodnenkov, Study of cartilage tribological properties. Sov. J. Friction Wear 9(4), 73–77 (1988)Google Scholar
  206. 206.
    S. Ermakov, B. Kupchinov, E. Beloyenko, A. Suslov, O. Eismont, The effect of liquid crystals on tribomechanical properties of cartilages, in Inzynieria Ortopedyczna i Protetyczna – IOP 99: Proceedings of the Sympozjum (Bialystok, 1999), pp. 93−99Google Scholar
  207. 207.
    B.I. Kupchinov, S.F. Ermakov, V.G. Rodnenkov, E.D. Beloenko, Relation of the structural-mechanical and antifriction properties of the synovial medium of the joints. Mech. Compos. Mater. 24(2), 188–194 (1988)CrossRefGoogle Scholar
  208. 208.
    E.D. Beloenko, S.F. Ermakov, B.I. Kupchinov, V.G. Rodnenkov, O.L. Eismont, Liquid crystal state of joint synovial lubricating medium. Experimental substantiation. Acta Bioeng. Biomech. 3(1), 24–32 (2001)Google Scholar
  209. 209.
    E.D. Beloenko, O.L. Eismont, L.A. Pashkevich, I.A. Chved, S.F. Ermakov, Effectiveness of medication containing bioactive cholesteric-nematic liquid crystals substance in treatment of experimental osteoarthritis. Proc. Nat. Acad. Sci. Belarus Med. Ser. 1, 5–8 (2005)Google Scholar
  210. 210.
    P. Walker, J. Sikorski, D. Dowson, Lubrication mechanism in human joints, bio-engineering group on human joints (University of Leeds, 1966–67), pp. 49−56Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.V.A. Belyi Metal-Polymer Research InstituteNational Academy of Sciences of BelarusGomelBelarus

Personalised recommendations