Skip to main content

(An Example for) Formally Modeling Robot Behavior with UML and OCL

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10748))

Abstract

One of the problems that the design and development of robotic applications currently have is the lack of unified formal modeling notations and tools that can address the many different aspects of these kinds of applications. This paper presents a small example of a chain of robotized arms that move parts in a production line, modeled using a combination of UML and OCL. We show the possibilities that these high-level notations provide to describe the structure and behaviour of the system, to model some novel aspects such as measurement uncertainty and tolerance of physical elements, and to perform several kinds of analyses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://robotml.github.io/.

  2. 2.

    http://smart-robotics.sourceforge.net/.

  3. 3.

    http://www.best-of-robotics.org/bride/bcm.html.

References

  1. Alonso, D., Vicente-Chicote, C., Ortiz, F., Pastor, J., Alvarez, B.: V3CMM: a 3-view component meta-model for model-driven robotic software development. J. Softw. Eng. Robot. 1(1), 3–17 (2010)

    Google Scholar 

  2. Atkinson, C., Gerbig, R., Markert, K., Zrianina, M., Egurnov, A., Kajzar, F.: Towards a deep, domain specific modeling framework for robot applications. In: Proceedings of MORSE 2014. CEUR WS Proceedings, vol. 1319, pp. 1–12 (2014)

    Google Scholar 

  3. Brugali, D., Gherardi, L.: HyperFlex: a model driven toolchain for designing and configuring software control systems for autonomous robots. In: Koubaa, A. (ed.) Robot Operating System (ROS). SCI, vol. 625, pp. 509–534. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26054-9_20

    Chapter  Google Scholar 

  4. Büttner, F., Gogolla, M.: On OCL-based imperative languages. Sci. Comput. Program. 92, 162–178 (2014)

    Article  Google Scholar 

  5. Djukić, V., Popović, A., Tolvanen, J.P.: Domain-specific modeling for robotics: from language construction to ready-made controllers and end-user applications. In: Proceedings of the 3rd WS Model-Driven Robot Software Engineering, MORSE 2016, pp. 47–54. ACM (2016)

    Google Scholar 

  6. Gogolla, M., Büttner, F., Richters, M.: USE: a UML-based specification environment for validating UML and OCL. Sci. Comput. Program. 69, 27–34 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gogolla, M., Hilken, F.: Model validation and verification options in a contemporary UML and OCL analysis tool. In: Oberweis, A., Reussner, R. (eds.) Proceedings of the Modellierung (MODELLIERUNG 2016), GI, LNI, vol. 254, pp. 203–218 (2016)

    Google Scholar 

  8. Hinkel, G., Groenda, H., Vannucci, L., Denninger, O., Cauli, N., Ulbrich, S.: A domain-specific language (DSL) for integrating neuronal networks in robot control. In: Proceedings of the 2015 Joint MORSE/VAO WS Model-Driven Robot Software Engineering and View-based Software-Engineering, pp. 9–15. ACM (2015)

    Google Scholar 

  9. JCGM 100:2008: Evaluation of measurement data – Guide to the expression of uncertainty in measurement (GUM). Joint Committee for Guides in Metrology (2008). http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf

  10. Mayerhofer, T., Wimmer, M., Vallecillo, A.: Computing with quantities (2016) https://github.com/moliz/moliz.quantitytypes

  11. Morozov, A., Janschek, K., Krüger, T., Schiele, A.: Stochastic error propagation analysis of model-driven space robotic software implemented in Simulink. In: Proceedings of the 3rd WS Model-Driven Robot Software Engineering, MORSE 2016, pp. 24–31. ACM (2016)

    Google Scholar 

  12. Object Management Group: Action language for foundational UML (FUML), version 1.0.1. (October 2013). OMG Document formal/2013-09-01. http://www.omg.org/spec/ALF/1.0.1/PDF/

  13. Object Management Group: OMG Systems Modeling Language (SysML), version 1.4. (January 2016). OMG Document formal/2016-01-05

    Google Scholar 

  14. Object Management Group: Semantics of a Foundational Subset for Executable UML Models (FUML), version 1.2.1. (January 2016). OMG Document formal/2016-01-05. http://www.omg.org/spec/FUML/1.2.1/PDF/

  15. OMG: UML Profile for Modeling and Analysis of Real-time and Embedded Systems (MARTE). Object Management Group. (June 2008). OMG doc. ptc/08-06-08

    Google Scholar 

  16. Opfer, S., Niemczyk, S., Geihs, K.: Multi-agent plan verification with answer set programming. In: Proceedings of the 3rd WS Model-Driven Robot Software Engineering, MORSE 2016, pp. 32–39. ACM (2016)

    Google Scholar 

  17. Orue, P., Morcillo, C., Vallecillo, A.: Expressing measurement uncertainty in software models. In: Proceedings of QUATIC 2016, pp. 1–10 (2016)

    Google Scholar 

  18. Ramaswamy, A., Monsuez, B., Tapus, A.: Model-driven software development approaches in robotics research. In: Proceedings of MISE 2014, pp. 43–48. ACM (2014)

    Google Scholar 

  19. Ringert, J.O., Rumpe, B., Wortmann, A.: Tailoring the MontiArcAutomaton component & connector ADL for generative development. In: Proceedings of the 2015 Joint MORSE/VAO WS Model-Driven Robot Software Engineering and View-Based Software-Engineering, pp. 41–47. ACM (2015)

    Google Scholar 

  20. Ringert, J.O., Roth, A., Rumpe, B., Wortmann, A.: Code generator composition for model-driven engineering of robotics component and connector systems. In: Proceedings of MORSE 2014. CEUR WS Proceedings, vol. 1319, pp. 63–74 (2014)

    Google Scholar 

  21. Rossini, A., de Lara, J., Guerra, E., Rutle, A., Wolter, U.: A formalisation of deep metamodelling. Formal Asp. Comput. 26(6), 1115–1152 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ruscio, D.D., Malavolta, I., Pelliccione, P.: A family of domain-specific languages for specifying civilian missions of multi-robot systems. In: Proceedings of MORSE 2014. CEUR WS Proceedings, vol. 1319, pp. 13–26 (2014)

    Google Scholar 

  23. Vallecillo, A.: On the combination of domain specific modeling languages. In: Kühne, T., Selic, B., Gervais, M.-P., Terrier, F. (eds.) ECMFA 2010. LNCS, vol. 6138, pp. 305–320. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13595-8_24

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Vallecillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gogolla, M., Vallecillo, A. (2018). (An Example for) Formally Modeling Robot Behavior with UML and OCL. In: Seidl, M., Zschaler, S. (eds) Software Technologies: Applications and Foundations. STAF 2017. Lecture Notes in Computer Science(), vol 10748. Springer, Cham. https://doi.org/10.1007/978-3-319-74730-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74730-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74729-3

  • Online ISBN: 978-3-319-74730-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics