Advertisement

On a Non-homogeneous Gompertz-Type Diffusion Process: Inference and First Passage Time

  • Giuseppina AlbanoEmail author
  • Virginia Giorno
  • Patricia Román-Román
  • Francisco Torres-Ruiz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10672)

Abstract

A stochastic diffusion model based on a generalized Gompertz deterministic growth in which the carrying capacity depends on the initial size of the population is considered. The growth parameter of the process is then modified by introducing a time-dependent exogenous term. The first passage time problem is considered and a two-step procedure to estimate the model is proposed. Simulation study is also provided for suitable choices of the exogenous term.

References

  1. 1.
    Albano, G., Giorno, V., Román-Román, P., Torres-Ruiz, F.: On the therapy effect for a stochastic Gompertz-type model. Math. Biosci. 235, 148–160 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Albano, G., Giorno, V., Román-Román, P., Torres-Ruiz, F.: Inference on a stochastic two-compartment model in tumor growth. Comput. Stat. Data Anal. 56, 1723–1736 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Albano, G., Giorno, V., Román-Román, P., Román-Román, S., Torres-Ruiz, F.: Estimating and determining the effect of a therapy on tumor dynamics by means of a modified Gompertz diffusion process. J. Theor. Biol. 364, 206–219 (2015)CrossRefzbMATHGoogle Scholar
  4. 4.
    Blasco, A., Piles, M., Varona, L.: A Bayesian analysis of the effect of selection for growth rate on growth curves in rabbits. Genet. Sel. Evol. 35, 21–41 (2003)CrossRefGoogle Scholar
  5. 5.
    Capocelli, R.M., Ricciardi, L.M.: Growth with regulation in random environment. Kibernetik 15, 147–157 (1974)CrossRefzbMATHGoogle Scholar
  6. 6.
    Di Crescenzo, A., Spina, S.: Analysis of a growth model inspired by Gompertz and Korf laws, and an analogous birth-death process. Math. Biosci. 282, 121–134 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Giorno, V., Román-Román, P., Spina, S., Torres-Ruiz, F.: Estimating a non-homogeneous Gompertz process with jumps as model of tumor dynamics. Comput. Stat. Data Anal. 107, 18–31 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gutiérrez-Jáimez, R., Román-Román, P., Romero, D., Serrano, J.J., Torres-Ruiz, F.: A new Gompertz-type diffusion process with application to random growth. Math. Biosci. 208, 147–165 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Román-Román, P., Romero, D., Rubio, M.A., Torres-Ruiz, F.: Estimating the parameters of a Gompertz-type diffusion process by means of simulated annealing. Appl. Math. Comput. 218, 5121–5131 (2012)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Giuseppina Albano
    • 1
    Email author
  • Virginia Giorno
    • 2
  • Patricia Román-Román
    • 3
  • Francisco Torres-Ruiz
    • 3
  1. 1.Dip. di Scienze Economiche e StatisticheUniversità di SalernoFiscianoItaly
  2. 2.Dip. di InformaticaUniversità di SalernoFiscianoItaly
  3. 3.Dpto. de Estadística e Investigación OperativaUniversidad de GranadaGranadaSpain

Personalised recommendations