Skip to main content

Stochastic Computing Using Droplet-Based Microfluidics

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 10672)

Abstract

In this work, we consider the realization of stochastic computing in the microfluidic domain. To this end, we exploit the fact that both, the bit streams and the operations required for stochastic computing can be realized in microfluidic systems through droplet streams and microfluidic gates. Simulating the trajectory of the individual droplets through the microfluidic gates confirmed the validity of our approach.

Keywords

  • Droplet-based microfluidics
  • Microfluidic computing
  • Microfluidic gates
  • Stochastic computing

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-74727-9_24
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   74.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-74727-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   95.00
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Notes

  1. 1.

    We refer to [8] for a description of the implementation for division and subtraction.

  2. 2.

    To allow for a correct functionality for \(A=1\) and \(B=1\), the droplets must enter the gate with a slight time delay.

References

  1. Mark, D., Haeberle, S., Roth, G., von Stetten, F., Zengerle, R.: Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem. Soc. Rev. 39(3), 1153–1182 (2010)

    CrossRef  Google Scholar 

  2. Teh, S.-Y., Lin, R., Hung, L.-H., Lee, A.P.: Droplet microfluidics. Lab Chip 8, 198–220 (2008)

    CrossRef  Google Scholar 

  3. Fuerstman, M.J., Garstecki, P., Whiteside, G.M.: Coding/decoding and reversibility of droplet trains in microfluidic networks. Science 315(5813), 828–832 (2007)

    CrossRef  Google Scholar 

  4. Leo, E.D., Galluccio, L., Lombardo, A., Morabito, G.: Networked labs-on-a-chip (NLoC): introducing networking technologies in microfluidic systems. Nano Commun. Netw. 3(4), 217–228 (2012)

    CrossRef  Google Scholar 

  5. Cheow, L.F., Yobas, L., Kwong, D.-L.: Digital microfluidics: droplet based logic gates. Appl. Phys. Lett. 90(5), 054107-1–054107-3 (2007)

    CrossRef  Google Scholar 

  6. Prakash, M., Gershenfeld, N.: Microfluidic bubble logic. Science 315(5813), 832–835 (2007)

    CrossRef  Google Scholar 

  7. Alaghi, A., Hayes, J.P.: Survey of stochastic computing. ACM Trans. Embed. Comput. Syst. 12(2s), 92:1–92:19 (2013)

    CrossRef  Google Scholar 

  8. Brown, B., Card, H.: Stochastic neural computation I: computational elements. IEEE Trans. Comput. 50(9), 891–905 (2001)

    MathSciNet  CrossRef  Google Scholar 

  9. Jenson, D., Riedel, M.: A deterministic approach to stochastic computation. In: Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, pp. 1–8 (2016)

    Google Scholar 

  10. Dinu, A., Cirstea, M.N., McCormick, M.: Stochastic implementation of motor controllers. In: Proceedings of the 2002 IEEE International Symposium on Electronics Industrial, pp. 639–644 (2002)

    Google Scholar 

  11. Hammadou, T., Nilson, M., Bermak, A., Ogunbona, P.: A \(96 \times 64\) intelligent digital pixel array with extended binary stochastic arithmetic. In: Proceedings of the IEEE International Symposium on Circuits and Systems, pp. IV-772–IV-775 (2003)

    Google Scholar 

  12. Gaudet, V.C., Rapley, A.C.: Iterative decoding using stochastic computation. Electron. Lett. 39(3), 299–301 (2003)

    CrossRef  Google Scholar 

  13. Tehrani, S.S., Gross, W.J., Mannor, S.: Stochastic decoding of LDPC codes. IEEE Commun. Lett. 10(10), 716–718 (2006)

    CrossRef  Google Scholar 

  14. Fuerstman, M.J., Lai, A., Thurlow, M.E., Shevkoplyas, S.S., Stone, H.A., Whitesides, G.M.: The pressure drop along rectangular microchannels containing bubbles. Lab Chip 7, 1479–1489 (2007)

    CrossRef  Google Scholar 

  15. Biral, A., Zordan, D., Zanella, A.: Modeling, simulation and experimentation of droplet-based microfluidic networks. Trans. Mol. Biol. Multi-scale Commun. 1(2), 122–134 (2015)

    CrossRef  Google Scholar 

  16. Grimmer, A., Haselmayr, W., Springer, A., Wille, R.: A discrete model for networked labs-on-chips: linking the physical world to design automation. In: 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6, June 2017. https://doi.org/10.1145/3061639.3062186

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Haselmayr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Haselmayr, W., Grimmer, A., Wille, R. (2018). Stochastic Computing Using Droplet-Based Microfluidics. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2017. EUROCAST 2017. Lecture Notes in Computer Science(), vol 10672. Springer, Cham. https://doi.org/10.1007/978-3-319-74727-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74727-9_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74726-2

  • Online ISBN: 978-3-319-74727-9

  • eBook Packages: Computer ScienceComputer Science (R0)