Advertisement

Rational Variable Projection Methods in ECG Signal Processing

  • Péter KovácsEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10672)

Abstract

In this paper we develop an adaptive electrocardiogram (ECG) model based on rational functions. We approximate the original signal by the partial sums of the corresponding Malmquist–Takenaka–Fourier series. Our aim in the construction of the model was twofold. Namely, besides good approximation an equally important point was to have direct connection with medical features. To this order, we consider the rational optimization problem as a special variable projection method. Based on the natural segmentation of a heartbeat into P, QRS, T waves, we use three complex parameters, i.e. the poles of the rational functions. For the optimization of the parameters, we apply constrained optimization. As a result every pole corresponds to one of these waves. We developed and tested our method by using the MIT-BIH Arrhythmia Database.

Keywords

Malmquist–Takenaka system Constrained optimization ECG modeling 

References

  1. 1.
    Chou, H.H., Chen, Y.J., Shiau, Y.C., Kuo, T.S.: An effective and efficient compression algorithm for ECG signals with irregular periods. IEEE Trans. Biomed. Eng. 53(6), 1198–1205 (2006)CrossRefGoogle Scholar
  2. 2.
    Clifford, G.D., Azuaje, F., McSharry, P.: Advanced Methods And Tools for ECG Data Analysis. Artech House, Massachusetts (2006)Google Scholar
  3. 3.
    Fridli, S., Kovács, P., Lócsi, L., Schipp, F.: Rational modeling of multi-lead QRS complexes in ECG signals. Ann. Univ. Sci. Budapest. Sect. Comp. 37, 145–155 (2012)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Fridli, S., Lócsi, L., Schipp, F.: Rational function systems in ECG processing. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2011. LNCS, vol. 6927, pp. 88–95. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-27549-4_12 CrossRefGoogle Scholar
  5. 5.
    Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), 215–220 (2000)CrossRefGoogle Scholar
  6. 6.
    Golub, G.H., Pereyra, V.: The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate. SIAM J. Num. Anal. (SINUM) 10(2), 413–432 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)Google Scholar
  8. 8.
    Kovács, P., Kiranyaz, S., Gabbouj, M.: Hyperbolic particle swarm optimization with application in rational identification. In: Proceedings of the 21st European Signal Processing Conference (EUSIPCO), pp. 1–5 (2013)Google Scholar
  9. 9.
    Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Science+Business Media, LLC, New York (2006).  https://doi.org/10.1007/978-0-387-40065-5 zbMATHGoogle Scholar
  10. 10.
    Pan, J., Tompkins, W.J.: A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 32(3), 230–236 (1985)CrossRefGoogle Scholar
  11. 11.
    Samiee, K., Kovács, P., Gabbouj, M.: Epileptic seizure detection in long-term EEG records using sparse rational decomposition and local Gabor binary patterns feature extraction. Knowl.-Based Syst. 118, 228–240 (2017)CrossRefGoogle Scholar
  12. 12.
    Zygmund, A.: Trigonometric Series I.–II. Cambridge University Press, Cambridge (1959)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Numerical AnalysisEötvös L. UniversityBudapestHungary

Personalised recommendations