Advertisement

On the Imputation of Missing Values in Univariate \(PM_{10}\) Time Series

  • G. AlbanoEmail author
  • M. La Rocca
  • C. Perna
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10672)

Abstract

Missing data frequently happen in environmental research, usually due to faults in data acquisition, inadequate sampling or measurement error. They make difficult to determine whether the limits set by the European Community on certain indicators of air quality are fulfilled or not. Indeed, due to missing values, the number of exceedances per year of \(PM_{10}\), that is particulate matter 10 \(\upmu \)m or less in diameter, and other air quality indicators are often heavily underestimated, and no environmental policy is applied to protect citizen health.

In this paper, we propose a non-parametric method to impute missing values in \(PM_{10}\) time series. It is primarily based on a local polynomial estimator of the trend-cycle in time series. We also compare the proposed method with other methods usually used in literature for the imputation of missing values in univariate time series and implemented in the R package imputeTS.

References

  1. 1.
    Albano, G., Perna, C.: A sequential test for evaluating air quality. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2015. LNCS, vol. 9520, pp. 143–149. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-27340-2_19 CrossRefGoogle Scholar
  2. 2.
    Albano, G., La Rocca, M., Perna, C.: Non linear time series analysis of air pollutants with missing data. In: Bassis, S., Esposito, A., Morabito, F.C., Pasero, E. (eds.) Advances in Neural Networks. SIST, vol. 54, pp. 371–378. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-33747-0_37 CrossRefGoogle Scholar
  3. 3.
    Health — Particulate Matter — Air and Radiation — US EPA. Epa.gov. 17 November 2010 (2010)Google Scholar
  4. 4.
    Junger, W.L., Ponce de Leon, A.: Imputation of missing data in time series for air pollutants. Atmos. Environ. 102, 96–104 (2015)CrossRefGoogle Scholar
  5. 5.
    Noor, M.N., Al Bakri, A.M.M., Yahaya, A.S., Ramli, N.A., Fitri, N.F.M.Y.: Estimation of missing values in environmental data set using interpolation technique: fitting on lognormal distribution. Aust. J. Basic Appl. Sci. 7(5), 336–341 (2013)Google Scholar
  6. 6.
    Raaschou-Nielsen, O., et al.: Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncol. 14(9), 813–822 (2013)CrossRefGoogle Scholar
  7. 7.
    Pèrez-Gonzàlez, A., Vilar-Fernàndez, J.M., Gonzĺez-Manteiga, W.: Asymptotic properties of local polynomial regression with missing data and correlated errors. Ann. Inst. Stat. Math. 61, 85–109 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Junninen, H., Niska, H., Tupprainen, K., Ruuskanen, J., Kolehmainen, M.: Methods for imputation of missing values in air quality data sets. Atmos. Environ. 38, 2895–2907 (2004)CrossRefGoogle Scholar
  9. 9.
    Yahaya, A.S., Ramli, N.A., Ahmad, F., Nor, N.M., Bahrim, M.N.H.: Determination of the best imputation technique for estimating missing values when fitting the weibull distribution. Int. J. Appl. Sci. Technol. 1(6), 278–285 (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Economics and StatisticsUniversity of SalernoFiscianoItaly

Personalised recommendations