Skip to main content

On Fractional Stochastic Modeling of Neuronal Activity Including Memory Effects

  • Conference paper
  • First Online:
Computer Aided Systems Theory – EUROCAST 2017 (EUROCAST 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10672))

Included in the following conference series:

Abstract

In order to model the memory and to describe the memory effects in the firing activity of a single neuron subject to a time-dependent input current, a fractional stochastic Langevin-type equation is considered. Two different discretization formulas are derived and the corresponding algorithms are implemented by means of R-codes for several values of the parameters. Reset mechanisms after successive spike times are suitably imposed to compare simulation results. The firing rates and some neuronal statistical estimates obtained by means the two algorithms are provided and discussed.

This paper is partially supported by G.N.C.S.- INdAM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armanyos, M., Radwan, A.G.: Fractional-order Fitzhugh-Nagumo and Izhikevich neuron models. In: 2016 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), pp. 1–5 (2016)

    Google Scholar 

  2. Bazzani, A., Bassi, G., Turchetti, G.: Diffusion and memory effects for stochastic processes and fractional Langevin equations. Phys. A: Stat. Mech. Appl. 324(3), 530–550 (2003). https://doi.org/10.1016/S0378-4371(03)00073-6. ISSN 0378-4371

    Article  MathSciNet  MATH  Google Scholar 

  3. Bernido, C.C., Carpio-Bernico, M.V.: On a fractional stochastic path integral approach in modelling interneuronal connectivity. Int. J. Mod. Phys. Conf. Ser. 17, 23–33 (2012)

    Article  Google Scholar 

  4. Buonocore, A., Caputo, L., Pirozzi, E., Ricciardi, L.M.: On a stochastic leaky integrate-and-fire neuronal model. Neural Comput. 22, 2558–2585 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Buonocore, A., Caputo, L., Pirozzi, E., Ricciardi, L.M.: The first passage time problem for Gauss-Diffusion processes: algorithmic approaches and applications to lif neuronal model. Methodol. Comput. Appl. Prob. 13, 29–57 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Buonocore, A., Caputo, L., Nobile, A.G., Pirozzi, E.: Restricted Ornstein-Uhlenbeck process and applications in neuronal models with periodic input signals. J. Comput. Appl. Math. 285, 59–71 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Buonocore, A., Caputo, L., Carfora, M.F., Pirozzi, E.: A leaky integrate-and-fire model with adaptation for the generation of a spike train. Math. Biosci. Eng. 13(3), 483–493 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. D’Onofrio, G., Pirozzi, E., Magnasco, M.O.: Towards stochastic modeling of neuronal interspike intervals including a time-varying input signal. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2015. LNCS, vol. 9520, pp. 166–173. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27340-2_22

    Chapter  Google Scholar 

  9. D’Onofrio, G., Pirozzi, E.: Successive spike times predicted by a stochastic neuronal model with a variable input signal. Math. Biosci. Eng. 13(3), 495–507 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kim, H., Shinomoto, S.: Estimating nonstationary inputs from a single spike train based on a neuron model with adaptation. Math. Bios. Eng. 11, 49–62 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kobayashi, R., Tsubo, Y., Shinomoto, S.: Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold. Front. Comput. Neurosci. 3, 1–11 (2009). Article 9

    Article  Google Scholar 

  12. Kumar, R.U., Mondal, A.: Dynamics of fractional order modified Morris-Lecar neural model. Netw. Biol. 5(3), 113–136 (2015)

    Google Scholar 

  13. Teka, W., Marinov, T.M., Santamaria, F.: Neuronal spike timing adaptation described with a fractional leaky integrate-and-fire model. PLoS Comput. Biol. 10(3), e1003526 (2014)

    Article  Google Scholar 

  14. Teka, W.W., et al.: Fractional-order leaky integrate-and-fire model with long term memory and power law dynamics. Neural Netw. 93, 110–125 (2017). https://doi.org/10.1016/j.neunet.2017.05.007

    Article  Google Scholar 

  15. Touboul, J., Faugeras, O.: Characterization of the first hitting time of a double integral processes to curved boundaries. Adv. Appl. Prob. 40, 501–528 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrica Pirozzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ascione, G., Pirozzi, E. (2018). On Fractional Stochastic Modeling of Neuronal Activity Including Memory Effects. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2017. EUROCAST 2017. Lecture Notes in Computer Science(), vol 10672. Springer, Cham. https://doi.org/10.1007/978-3-319-74727-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74727-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74726-2

  • Online ISBN: 978-3-319-74727-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics