The Seismogenic Sources from the West and South-West of Romania

Conference paper
Part of the Springer Natural Hazards book series (SPRINGERNAT)

Abstract

The study region is the most important seismic region of Romania when we refer to the crustal seismicity as a source of seismic hazard. So far there have been recorded 91 seismic events that produced significant effect in buildings (Io ≥ 6 EMS), some of them resulting in severe damage and even casualties (Io ≥ 7 EMS). In this paper we modelled the seismogenic sources in the region using a new seismotectonic model constructed on new earthquakes and focal mechanisms catalogues basis. This model was elaborated starting from the relationship between geology and historical and instrumental seismicity and then it was better constrained by geophysical, neotectonic, geodetic data and particularly by active stress field features. The stress tensor parameters and the stress regime have been determined by formal inversion of the focal mechanisms solutions. Our study provides evidence of at least seven different deformation domains with different tectonic regimes as a realistic support for assessing the seismogenic potential of the geological structures. Each seismogenic source is characterized by completeness magnitude (Mcomp), maximum probable magnitude (Mmax) and magnitude—recurrence parameters. The probabilistic hazard maps produced in terms of PGA using the new seismic sources highlights the importance of their configuration on the hazard parameter values and their spatial distribution.

Keywords

Seismogenic sources Seismotectonics Seismicity Mmax Stress field 

Notes

Acknowledgements

This paper was carried out within Nucleu Program supported by ANCSI, partly the Project 30°N/27.02.2009/PN 09 30–01 06 and partly Project PN 16 35 01 05 and PN 16 35 01 12.

References

  1. Ardeleanu L, Leydecker G, Bonjer K, Busche H, Kaiser D, Schmitt R (2005) Probabilistic seismic hazard map for Romania basis for new building code. Nat Hazards Earth Syst Sci 5:679–684CrossRefGoogle Scholar
  2. Bada G, Horvath F, Doveny P, Szafian P, Windhoffer G, Cloetingh S (2007) Present-day stress field and tectonic inversion in the Pannonian basin. Glob Planet Change 58:165–180CrossRefGoogle Scholar
  3. Bala A, Raileanu V, Dinu C, Diaconescu M (2015) Crustal seismicity and active fault systems in Romania. Romanian Rep Phys 67(3):1176–1191Google Scholar
  4. Basili R, Valensise G, Vannoli P et al (2008) The Database of Individual Seismogenic Sources (DISS) version 3: summarizing 20 years of research on Italy’s earthquake geology. Tectonophysics 453:20–43CrossRefGoogle Scholar
  5. Ciobanu CL, Cook NJ, Stein H (2002) Regional setting and geochronology of the late cretaceous banatitic magmatic and metallogenetic belt. Mineral Deposita 37:541–567CrossRefGoogle Scholar
  6. Ciulavu D, Dinu C, Szakacs A, Dordea D (2000) Neogene kinematics of the Transylvanian basin (Romania). AAPG Bull 84(10):1589–1615Google Scholar
  7. Delvaux D, Sperner B (2003) Stress tensor inversion from fault kinematic indicators and focal mechanism data: the TENSOR program. In: Nieuwland D (ed) New insights into structural interpretation and modelling, vol 212. Geological Society London Special Publication, pp 75–100Google Scholar
  8. Grünthal G, Wahlström R, Stromeyer D (2013) The SHARE European Earthquake Catalogue (SHEEC) for the time period 1900–2006 and its comparison to the European-Mediterranean Earthquake Catalogue (EMEC). J Seismolog 17(4):1339–1344CrossRefGoogle Scholar
  9. Horvath F, Csontos L, Dovenyi P, Fodor L, Greneczy G, Sikhegyi F, Szafian P, Szekely B, Timar G, Toth L, Toth T (2006) A Pannon-medence jelenkori geodinamikajanak atlasza: Euro-konform terkepsorozat es magyareze. Magyar Geofizica 47:133–137Google Scholar
  10. Institutul Geologic Roman (1968) Harta Geologica a Romaniei. scale 1:200 000Google Scholar
  11. Kijko A (2004) Estimation of the maximum magnitude. Pure appl Geophys 161:1655–1681CrossRefGoogle Scholar
  12. Moldovan IA, Popescu E, Constantin A (2008) Probabilistic seismic hazard assessment in Romania: application for crustal seismic active zones. Rom J Phys 53(3–4):575–591Google Scholar
  13. NATO SfP Project 983054 (2011) Harmonization of seismic hazard maps for the Western Balkan Countries (BSHAP). Final report; http://www.msb.gov.ba/dokumenti/AB38745. Last Accessed 17.07.2017
  14. Oncescu MC, Marza V, Rizescu M, Popa M (1999) The Romanian earthquakes catalogue, 984-1997. In: Wenzel Lungu (ed) Vrancea earthquakes: tectonics, hazard mitigation. Kluwer Publication, The Netherlands, pp 43–47CrossRefGoogle Scholar
  15. Ordaz M, Aguilar A, Arboleda J (2007) Crisis program for computing seismic hazard. Instituto de Ingeneria, UNAM, MexicoGoogle Scholar
  16. Oros E (2011) Researches about seismic hazard for Banat Region. PhD dissertation, University of BucharestGoogle Scholar
  17. Oros E, Diaconescu M (2015) Recent vs. historical seismicity analysis for banat seismic region. Math Model Civ Eng 11(1):24–32. https://doi.org/10.1515/mmce-2015-0001 Google Scholar
  18. Oros E, Oros V (2009) New and updated information about the local hazard seismic sources in the Banat Seismic Region. In UTCB (ed) Hazard, vulnerability and risk. 4th national conference of earthquake engineering, vol 1, pp 133–139. CONPRESS, Bucharest, October 2009Google Scholar
  19. Oros E, Popa M, Moldovan IA (2008a) Seismological database for banat seismic region (Romania)—part 1: the parametric earthquake catalogue. Rom J Phys 53(7–8):955–964Google Scholar
  20. Oros E, Popa M, Moldovan IA, Popescu M (2008b) Seismological database for banat seismic region (Romania) - Part 2: the catalogue of the focal mechanism solutions. Rom J Phys 53(7–8):965–977Google Scholar
  21. Oros E, Popa M, Ghita C, Rogozea M, Rau-Vanciu A, Neagoe C (2016) Catalogue of focal mechanism solutions for crustal earthquakes in intra-carpathian region of Romania. Paper presented at the 35th General Assembly of the European Seismological Commission, Italy, 24–11 Sept 2016Google Scholar
  22. Oros E, Constantinescu EG, Diaconescu M, Popa M (2017) Stress field, seismicity and seismotectonic features in the Apuseni Mts area. In: Proceedings of 17th International Scientific GeoConference SGEM 2017, Science and technologies in geology, exploration and mining, Issue 14. Appl Environ Geophys Oil Gas Explor 17:421–428Google Scholar
  23. Polonic G (1985) Neotectonic activity at the eastern border of the Pannonian depression and its seismic implications. Tectonophysics 47:109–115CrossRefGoogle Scholar
  24. Radulian M, Mandrescu N, Panza GF, Popescu E, Utale A (2000) Characterization of seismogenic zones of Romania. Pure Appl Geophys 157:57–77CrossRefGoogle Scholar
  25. Reiter L (1991) Earthquakes hazard analysis: issues and insights. Colombia University Press, New YorkGoogle Scholar
  26. Sandulescu M (1984) Geotectonica Romaniei. Tehnical Publishing House, BucharestGoogle Scholar
  27. Scholz CH (2015) On the stress dependence of the earthquake b value. Geophys Res Lett 42:1399–1402.  https://doi.org/10.1002/2014GL062863 CrossRefGoogle Scholar
  28. Simeonova SD, Solakov DE, Leydecker G, Busche H, Schmitt T, Kaiser D (2006) Probabilistic seismic hazard map for Bulgaria as a basis for a new building code. Nat Haz Earth Syst Sci 6:881–887CrossRefGoogle Scholar
  29. Stucchi M, Rovida A, Gomez Capera AA et al (2013) The SHARE European Earthquake Catalogue (SHEEC) 1000–1899. J Seismol 17:523–544CrossRefGoogle Scholar
  30. Wells DL, Coppershmith KJ (1994) New empirical relationships among magnitude, rupture length, width, area and displacement. Bull Seismol Soc Am 84(4):974–1002Google Scholar
  31. Wiemer S (2001) Software package to analyse seismicity: ZMAP. Seismol Res Lett 72:374–383CrossRefGoogle Scholar
  32. Wiemer S, Gerstenberger MC, Hauksson E (2002) Properties of the 1999, Mw7.1, Hector Mine earthquake: implications for aftershock hazard. Bull Seismol Soc Am 92:1227–1240CrossRefGoogle Scholar
  33. Zaharia B, Oros E, Popa M, Radulian M (2010) Tomographic research in Banat area using local earthquake data. Paper presented at the 32nd General Assembly of ESC, Montpellier, France, 6–10 Sept 2010Google Scholar
  34. Zaharia B, Grecu B, Popa M, Oros E, Radulian M (2017) Crustal structure in the western part of Romania from local seismic tomography. Paper presented at the world multidisciplinary earth sciences symposium, WMESS 2017, Praga, Czech Republic, 11–15 Sept 2017Google Scholar
  35. Zugravescu D, Polonic G (1997) Geodynamic compartments and present-day stress state on the Romanian territory. Revue Roumaine de Geophysique 41:3–24Google Scholar
  36. NATO SfP Project 983054 (2011) Harmonization of seismic hazard maps for the Western Balkan Countries (BSHAP). Final report. http://www.msb.gov.ba/dokumenti/AB38745. Last Accessed 17.07.2017

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Institute for Earth PhysicsMagureleRomania

Personalised recommendations