Skip to main content

Sliding Window Symbolic Regression for Predictive Maintenance Using Model Ensembles

  • Conference paper
  • First Online:
Computer Aided Systems Theory – EUROCAST 2017 (EUROCAST 2017)

Abstract

Predictive Maintenance (PdM) is among the trending topics in the current Industry 4.0 movement and hence, intensively investigated. It aims at sophisticated scheduling of maintenance, mostly in the area of industrial production plants. The idea behind PdM is that, instead of following fixed intervals, service actions could be planned based upon the monitored system condition in order to prevent outages, which leads to less redundant maintenance procedures and less necessary overhauls. In this work we will present a method to analyze a continuous stream of data, which describes a system’s condition progressively. Therefore, we motivate the employment of symbolic regression ensemble models and introduce a sliding-window based algorithm for their evaluation and the detection of stable and changing system states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://dev.heuristiclab.com.

References

  1. Hermann, M., Pentek, T., Otto, B.: Design principles for industrie 4.0 scenarios. In: 49th Hawaii International Conference on System Sciences (HICSS), pp. 3928–3937. IEEE (2016)

    Google Scholar 

  2. Li, Z., Wang, K., He, Y.: Industry 4.0 - potentials for predictive maintenance. In: 6th International Workshop of Advanced Manufacturing and Automation (IWAMA), Atlantis Press (2016)

    Google Scholar 

  3. Winkler, S.M., Affenzeller, M., Kronberger, G., Kommenda, M., Burlacu, B., Wagner, S.: Sliding window symbolic regression for detecting changes of system dynamics. In: Riolo, R., Worzel, W.P., Kotanchek, M. (eds.) Genetic Programming Theory and Practice XII. GEC, pp. 91–107. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16030-6_6

    Chapter  Google Scholar 

  4. Widmer, G.: Recognition and exploitation of contextual clues via incremental meta-learning. In: Proceedings of the 13th International Conference on Machine Learning, pp. 525–533 (1996)

    Google Scholar 

  5. Liu, H., Setiono, R.: Some issues on scalable feature selection. Expert Syst. Appl. 15, 333–339 (1998)

    Article  Google Scholar 

  6. Scheibelhofer, P., Gleispach, D., Hayderer, G., Stadlober, E.: A methodology for predictive maintenance in semiconductor manufacturing. Austrian J. Stat. 41, 161–173 (2016)

    Article  Google Scholar 

  7. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of things (IoT): a vision, architectural elements, and future directions. Future Gener. Comput. Syst. 29, 1645–1660 (2013)

    Article  Google Scholar 

  8. Cartella, F., Lemeire, J., Dimiccoli, L., Sahli, H.: Hidden Semi-Markov Models for Predictive Maintenance. Math. Probl. Eng. 2015, 23 p. (2015). Article ID 278120. https://doi.org/10.1155/2015/278120

  9. Affenzeller, M., Winkler, S., Wagner, S., Beham, A.: Genetic Algorithms and Genetic Programming Modern Concepts and Practical Applications. Chapman & Hall/CRC, Boca Raton (2009)

    Book  MATH  Google Scholar 

  10. Kotanchek, M., Smits, G., Vladislavleva, E.: Trustable symbolic regression models: using ensembles, interval arithmetic and pareto fronts to develop robust and trust-aware models. In: Riolo, R., Soule, T., Worzel, B. (eds.) Genetic Programming Theory and Practice V, pp. 201–220. Springer, Boston (2008). https://doi.org/10.1007/978-0-387-76308-8_12

    Chapter  Google Scholar 

  11. Affenzeller, M., Winkler, S.M., Stekel, H., Forstenlechner, S., Wagner, S.: Improving the accuracy of cancer prediction by ensemble confidence evaluation. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2013. LNCS, vol. 8111, pp. 316–323. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-53856-8_40

    Chapter  Google Scholar 

Download references

Acknowledgments

The work described in this paper was done within the project “Smart Factory Lab” which is funded by the European Fund for Regional Development (EFRE) and the country of Upper Austria as part of the program “Investing in Growth and Jobs 2014–2020”.

figure a

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Zenisek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zenisek, J. et al. (2018). Sliding Window Symbolic Regression for Predictive Maintenance Using Model Ensembles. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2017. EUROCAST 2017. Lecture Notes in Computer Science(), vol 10671. Springer, Cham. https://doi.org/10.1007/978-3-319-74718-7_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74718-7_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74717-0

  • Online ISBN: 978-3-319-74718-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics