Skip to main content

Analysis of Schema Frequencies in Genetic Programming

  • Conference paper
  • First Online:
Computer Aided Systems Theory – EUROCAST 2017 (EUROCAST 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10671))

Included in the following conference series:

Abstract

Genetic Programming (GP) schemas are structural templates equivalent to hyperplanes in the search space. Schema theories provide information about the properties of subsets of the population and the behavior of genetic operators. In this paper we propose a practical methodology to identify relevant schemas and measure their frequency in the population. We demonstrate our approach on an artificial symbolic regression benchmark where the parts of the formula are already known. Experimental results reveal how solutions are assembled within GP and explain diversity loss in GP populations through the proliferation of repeated patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Affenzeller, M., Wagner, S.: Offspring selection: a new self-adaptive selection scheme for genetic algorithms. In: Ribeiro, B., Albrecht, R.F., Dobnikar, A., Pearson, D.W., Steele, N.C. (eds.) Adaptive and Natural Computing Algorithms, pp. 218–221. Springer, Vienna (2005). https://doi.org/10.1007/3-211-27389-1_52

    Chapter  Google Scholar 

  2. Götz, M., Koch, C., Martens, W.: Efficient algorithms for descendant-only tree pattern queries. Inf. Syst. 34(7), 602–623 (2009)

    Article  Google Scholar 

  3. Langdon, W.B., Banzhaf, W.: Repeated patterns in genetic programming. Nat. Comput. 7(4), 589–613 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Poli, R.: Exact schema theory for genetic programming and variable-length genetic algorithms with one-point crossover. Genet. Program Evolvable Mach. 2(2), 123–163 (2001)

    Article  MATH  Google Scholar 

  5. Poli, R., Langdon, W.B., Dignum, S.: Generalisation of the limiting distribution of program sizes in tree-based genetic programming and analysis of its effects on bloat. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary, GECCO 2007, pp. 1588–1595. Press (2007)

    Google Scholar 

  6. Poli, R., Mcphee, N.F.: Covariant parsimony pressure for genetic programming (2008)

    Google Scholar 

  7. Poli, R., McPhee, N.F.: General schema theory for genetic programming with subtree-swapping crossover: part I. Evol. Comput. 11(1), 53–66 (2003)

    Article  Google Scholar 

  8. Smart, W., Andreae, P., Zhang, M.: Empirical analysis of GP tree-fragments. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 55–67. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71605-1_6

    Chapter  Google Scholar 

  9. Vladislavleva, E.J., Smits, G.F., den Hertog, D.: Order of nonlinearity as a complexity measure for models generated by symbolic regression via Pareto genetic programming. IEEE Trans. Evol. Comput. 13(2), 333–349 (2009)

    Article  Google Scholar 

  10. White, D.: An overview of schema theory. CoRR abs/1401.2651 (2014). http://arxiv.org/abs/1401.2651

  11. Wilson, G.C., Heywood, M.I.: Context-based repeated sequences in linear genetic programming. In: Keijzer, M., Tettamanzi, A., Collet, P., van Hemert, J., Tomassini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 240–249. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31989-4_21

    Chapter  Google Scholar 

  12. Winkler, S., Affenzeller, M., Burlacu, B., Kronberger, G., Kommenda, M., Fleck, P.: Similarity-based analysis of population dynamics in genetic programming performing symbolic regression. In: Genetic Programming Theory and Practice XIV. Genetic and Evolutionary Computation. Springer (2016)

    Google Scholar 

Download references

Acknowledgements

The work described in this paper was done within the COMET Project Heuristic Optimization in Production and Logistics (HOPL), #843532 funded by the Austrian Research Promotion Agency (FFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Burlacu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Burlacu, B., Affenzeller, M., Kommenda, M., Kronberger, G., Winkler, S. (2018). Analysis of Schema Frequencies in Genetic Programming. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2017. EUROCAST 2017. Lecture Notes in Computer Science(), vol 10671. Springer, Cham. https://doi.org/10.1007/978-3-319-74718-7_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74718-7_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74717-0

  • Online ISBN: 978-3-319-74718-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics