Skip to main content

Optimization Networks for Integrated Machine Learning

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 10671)

Abstract

Optimization networks are a new methodology for holistically solving interrelated problems that have been developed with combinatorial optimization problems in mind. In this contribution we revisit the core principles of optimization networks and demonstrate their suitability for solving machine learning problems. We use feature selection in combination with linear model creation as a benchmark application and compare the results of optimization networks to ordinary least squares with optional elastic net regularization. Based on this example we justify the advantages of optimization networks by adapting the network to solve other machine learning problems. Finally, optimization analysis is presented, where optimal input values of a system have to be found to achieve desired output values. Optimization analysis can be divided into three subproblems: model creation to describe the system, model selection to choose the most appropriate one and parameter optimization to obtain the input values. Therefore, optimization networks are an obvious choice for handling optimization analysis tasks.

Keywords

  • Optimization networks
  • Machine learning
  • Feature selection
  • Optimization analysis

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-74718-7_47
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-74718-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  1. Affenzeller, M., Winkler, S., Wagner, S., Beham, A.: Genetic Algorithms and Genetic Programming - Modern Concepts and Practical Applications, Numerical Insights, vol. 6. CRC Press, Chapman & Hall, Boca Raton (2009)

    CrossRef  MATH  Google Scholar 

  2. Beham, A., Fechter, J., Kommenda, M., Wagner, S., Winkler, S.M., Affenzeller, M.: Optimization strategies for integrated knapsack and traveling salesman problems. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2015. LNCS, vol. 9520, pp. 359–366. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27340-2_45

    CrossRef  Google Scholar 

  3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    CrossRef  MATH  Google Scholar 

  4. Draper, N.R., Smith, H., Pownell, E.: Applied Regression Analysis, vol. 3. Wiley, New York (1966)

    Google Scholar 

  5. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3(Mar), 1157–1182 (2003)

    MATH  Google Scholar 

  6. Hauder, V.A., Beham, A., Wagner, S.: Integrated performance measurement for optimization networks in smart enterprises. In: Ciuciu, I., Debruyne, C., Panetto, H., Weichhart, G., Bollen, P., Fensel, A., Vidal, M.-E. (eds.) OTM 2016. LNCS, vol. 10034, pp. 26–35. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55961-2_3

    CrossRef  Google Scholar 

  7. Karder, J., Wagner, S., Beham, A., Kommenda, M., Affenzeller, M.: Towards the design and implementation of optimization networks in HeuristicLab. In: GECCO 2017: Proceedings of the Nineteenth International Conference on Genetic and Evolutionary Computation Conference, ACM (2017 accepted for publication)

    Google Scholar 

  8. Kommenda, M., Burlacu, B., Holecek, R., Gebeshuber, A., Affenzeller, M.: Heat treatment process parameter estimation using heuristic optimization algorithms. In: Proceedings of the 27th European Modeling and Simulation Symposium EMSS 2015, Bergeggi, Italy, pp. 222–228, September 2015

    Google Scholar 

  9. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  10. O’Brien, J.A., Marakas, G.: Introduction to Information Systems. McGraw-Hill Inc., New York (2005)

    Google Scholar 

  11. Olson, R.S., Urbanowicz, R.J., Andrews, P.C., Lavender, N.A., Kidd, L.C., Moore, J.H.: Automating biomedical data science through tree-based pipeline optimization. In: Squillero, G., Burelli, P. (eds.) EvoApplications 2016. LNCS, vol. 9597, pp. 123–137. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31204-0_9

    CrossRef  Google Scholar 

  12. Wagner, S., et al.: Architecture and design of the HeuristicLab optimization environment. In: Klempous, R., Nikodem, J., Jacak, W., Chaczko, Z. (eds.) Advanced Methods and Applications in Computational Intelligence. Topics in Intelligent Engineering and Informatics, vol. 6, pp. 197–261. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-319-01436-4_10

    CrossRef  Google Scholar 

  13. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc.: Series B (Stat. Methodol.) 67(2), 301–320 (2005)

    MathSciNet  CrossRef  MATH  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support by the Austrian Research Promotion Agency (FFG) and the Government of Upper Austria within the COMET Project #843532 Heuristic Optimization in Production and Logistics (HOPL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kommenda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Kommenda, M. et al. (2018). Optimization Networks for Integrated Machine Learning. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2017. EUROCAST 2017. Lecture Notes in Computer Science(), vol 10671. Springer, Cham. https://doi.org/10.1007/978-3-319-74718-7_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74718-7_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74717-0

  • Online ISBN: 978-3-319-74718-7

  • eBook Packages: Computer ScienceComputer Science (R0)