Abstract
Structure learning is the identification of the structure of graphical models based solely on observational data and is NP-hard. An important component of many structure learning algorithms are heuristics or bounds to reduce the size of the search space. We argue that variable relevance rankings that can be easily calculated for many standard regression models can be used to improve the efficiency of structure learning algorithms. In this contribution, we describe measures that can be used to evaluate the quality of variable relevance rankings, especially the well-known normalized discounted cumulative gain (NDCG). We evaluate and compare different regression methods using the proposed measures and a set of linear and non-linear benchmark problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Campos, C.P., Ji, Q.: Efficient structure learning of Bayesian networks using constraints. J. Mach. Learn. Res. 12, 663–689 (2011)
Chickering, D.M.: Learning Bayesian Networks is NP-Complete, pp. 121–130. Springer, Heidelberg (1996). https://doi.org/10.1007/978-1-4612-2404-4_12
Elidan, G., Nachman, I., Friedman, N.: “Ideal Parent” structure learning for continuous variable Bayesian networks. J. Mach. Learn. Res. 8(8), 1799–1833 (2007)
Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3), 432–441 (2008)
Friedman, N., Nachman, I.: Gaussian process networks. In: Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence (UAI), pp. 211–219. Morgan Kaufmann Publishers (2000)
Hand, D.J., Till, R.J.: A simple generalisation of the area under the ROC curve for multiple class classification problems. Mach. Learn. 45(2), 171–186 (2001). https://doi.org/10.1023/A:1010920819831
Hofmann, R., Tresp, V.: Discovering structure in continuous variables using Bayesian networks. In: Advances in Neural Information Processing Systems (NIPS), pp. 500–506 (1996)
Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. (TOIS) 20(4), 422–446 (2002)
Koivisto, M., Sood, K.: Exact Bayesian structure discovery in Bayesian networks. J. Mach. Learn. Res. 5(May), 549–573 (2004)
Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques - Adaptive Computation and Machine Learning. MIT Press, Cambridge (2009)
Koski, T.J., Noble, J.: A review of Bayesian networks and structure learning. Math. Applicanda 40(1), 51–103 (2012)
Kronberger, G.: Symbolic Regression for Knowledge Discovery - Bloat, Overfitting, and Variable Interaction Networks. Reihe C: Technik und Naturwissenschaften, Trauner Verlag (2011)
Kronberger, G., Fink, S., Kommenda, M., Affenzeller, M.: Macro-economic time series modeling and interaction networks. In: Di Chio, C., Brabazon, A., Di Caro, G.A., Drechsler, R., Farooq, M., Grahl, J., Greenfield, G., Prins, C., Romero, J., Squillero, G., Tarantino, E., Tettamanzi, A.G.B., Urquhart, N., Uyar, A.Ş. (eds.) EvoApplications 2011. LNCS, vol. 6625, pp. 101–110. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20520-0_11
Meinshausen, N., Bühlmann, P.: High-dimensional graphs and variable selection with the lasso. Annal. Stat. 34(3), 1436–1462 (2006)
Rao, R., Lakshminarayanan, S.: Variable interaction network based variable selection for multivariate calibration. Anal. Chim. Acta 599(1), 24–35 (2007)
Singh, A.P., Moore, A.W.: Finding optimal Bayesian networks by dynamic programming. Technical report CMU-CALD-05-1062, School of Computer Science, Carnegie Mellon University, June 2005
Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search. Springer, New York (1993). https://doi.org/10.1007/978-1-4612-2748-9
Tsamardinos, I., Brown, L.E., Aliferis, C.F.: The max-min hill-climbing Bayesian network structure learning algorithm. Mach. Learn. 65(1), 31–78 (2006)
Winker, S., Affenzeller, M., Kronberger, G., Kommenda, M., Wagner, S., Jacak, W., Stekel, H.: Variable interaction networks in medical data. In: Proceedings of the 24th European Modeling and Simulation Symposium EMSS 2012, pp. 265–270. Dime Universitá di Genova (2012)
Acknowledgements
The authors gratefully acknowledge financial support by the Austrian Research Promotion Agency (FFG) and the Government of Upper Austria within the COMET Project #843532 Heuristic Optimization in Production and Logistics (HOPL).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Kronberger, G., Burlacu, B., Kommenda, M., Winkler, S., Affenzeller, M. (2018). Measures for the Evaluation and Comparison of Graphical Model Structures. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2017. EUROCAST 2017. Lecture Notes in Computer Science(), vol 10671. Springer, Cham. https://doi.org/10.1007/978-3-319-74718-7_34
Download citation
DOI: https://doi.org/10.1007/978-3-319-74718-7_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-74717-0
Online ISBN: 978-3-319-74718-7
eBook Packages: Computer ScienceComputer Science (R0)