Advertisement

Life in Suspended Animation: Role of Chaperone Proteins in Vertebrate and Invertebrate Stress Adaptation

  • Yichi Zhang
  • Kenneth B. StoreyEmail author
Chapter
Part of the Heat Shock Proteins book series (HESP, volume 13)

Abstract

When confronted by environmental stress, organisms can employ physiological and biochemical adaptations for survival. These include hibernation, estivation, anhydrobiosis, anaerobiosis, and freeze tolerance. Underlying most of these is strong metabolic rate depression that suppresses rates of ATP-expensive processes like transcription, translation, and protein degradation to achieve major energy savings. Chaperone proteins are crucial to hypometabolism; helping to preserve cell viability and stabilize the proteome over extended periods of time. Two types of chaperones are important to the stress response: heat shock proteins (HSP) and glucose regulated proteins (GRP). Both act to fold new proteins or refold damaged and unfolded proteins, and can also have anti-apoptotic or other protective roles. This review summarizes recent knowledge on the involvement of HSP and GRP in animal responses to environmental stress, showing that chaperone upregulation is a consistent feature of hypometabolism. Hibernating mammals, cold-hardy insects, anoxic turtles, and dehydrated frogs and snails all show upregulation in HSP and GRP gene or protein expression during seasonal or stress-induced dormancies. This widespread chaperone response to environmental stress also provides insights into ways to improve strategies for medical applications such as organ preservation or combating diseases where oxidative and proteotoxic stresses contribute to the condition.

Keywords

Anoxia Dehydration Estivation Freeze tolerance Hibernation Metabolic rate depression 

Notes

Acknowledgements

We thank J.M. Storey for editorial review of the manuscript and her helpful comments. Research in the Storey lab was supported by a Discovery grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada (#6793) to Kenneth B. Storey. Kenneth B. Storey holds the Canada Research Chair in Molecular Physiology; Yichi Zhang held postgraduate Queen Elizabeth II Graduate Scholarships in Science and Technology.

References

  1. Ahner, A., Gong, X., Schmidt, B. Z., et al. (2013). Small heat shock proteins target mutant cystic fibrosis transmembrane conductance regulator for degradation via a small ubiquitin-like modifier-dependent pathway. Molecular Biology of the Cell, 24, 74–84.  https://doi.org/10.1091/mbc.E12-09-0678 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alpert, P. (2006). Constraints of tolerance: why are desiccation-tolerant organisms so small or rare? The Journal of Experimental Biology, 209, 1575–1584.  https://doi.org/10.1242/jeb.02179 CrossRefPubMedGoogle Scholar
  3. Badin, R. A., Lythgoe, M. F., van der Weerd, L., et al. (2006). Neuroprotective effects of virally delivered HSPs in experimental stroke. Journal of Cerebral Blood Flow and Metabolism, 26, 371–381.  https://doi.org/10.1038/sj.jcbfm.9600190 CrossRefPubMedGoogle Scholar
  4. Bansal, S., Luu, B. E., & Storey, K. B. (2016). MicroRNA regulation in heart and skeletal muscle over the freeze-thaw cycle in the freeze tolerant wood frog. Journal of Comparative Physiology B, 186, 229–241.  https://doi.org/10.1007/s00360-015-0951-3 CrossRefGoogle Scholar
  5. Barnes, B. M. (1989). Freeze avoidance in a mammal: Body temperatures below 0°C in an Arctic Hibernator. Science, 244, 1593–1595.  https://doi.org/10.1126/science.2740905 CrossRefPubMedGoogle Scholar
  6. Beere, H. M., Wolf, B. B., Cain, K., et al. (2000). Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nature Cell Biology, 2, 469–475.  https://doi.org/10.1038/35019501 CrossRefPubMedGoogle Scholar
  7. Biggar, K. K., Wu, C. W., Tessier, S. N., et al. (2015). Primate torpor: Regulation of stress-activated protein kinases during daily torpor in the gray mouse lemur, Microcebus murinus. Genomics Proteomics Bioinformatics, 13, 81–90.  https://doi.org/10.1016/j.gpb.2015.03.002 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Brehme, M., Voisine, C., Rolland, T., et al. (2014). A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease. Cell Reports, 9, 1135–1150.  https://doi.org/10.1016/j.celrep.2014.09.042 CrossRefPubMedPubMedCentralGoogle Scholar
  9. van Breukelen, F., Sonenberg, N., & Martin, S. L. (2004). Seasonal and state-dependent changes of eIF4E and 4E-BP1 during mammalian hibernation: implications for the control of translation during torpor. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 287, R349–R353.  https://doi.org/10.1152/ajpregu.00728.2003 CrossRefPubMedGoogle Scholar
  10. Brinkmeier, H., & Ohlendieck, K. (2014). Chaperoning heat shock proteins: Proteomic analysis and relevance for normal and dystrophin-deficient muscle. Proteomics - Clinical Applications, 8, 875–895.  https://doi.org/10.1002/prca.201400015 CrossRefPubMedGoogle Scholar
  11. Brooks, S. P. J., & Storey, K. B. (1995). Evidence for aestivation specific proteins in Otala lactea. Molecular and Cellular Biochemistry, 143, 15–20.  https://doi.org/10.1007/BF00925922 CrossRefPubMedGoogle Scholar
  12. Brown, D. (2003). The ins and outs of aquaporin-2 trafficking. American Journal of Physiology. Renal Physiology, 284, F893–F901.  https://doi.org/10.1152/ajprenal.00387.2002 CrossRefPubMedGoogle Scholar
  13. Brychzy, A., Rein, T., Winklhofer, K. F., et al. (2003). Cofactor Tpr2 combines two TPR domains and a J domain to regulate the Hsp70/Hsp90 chaperone system. The EMBO Journal, 22, 3613–3623.  https://doi.org/10.1093/emboj/cdg362 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Buck, C. L., & Barnes, B. M. (2000). Effects of ambient temperature on metabolic rate, respiratory quotient, and torpor in an arctic hibernator. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 279, R255–R262.CrossRefGoogle Scholar
  15. Bukau, B., Weissman, J., & Horwich, A. (2006). Molecular chaperones and protein quality control. Cell, 125, 443–451.CrossRefGoogle Scholar
  16. Cao, G., Pei, W., Lan, J., et al. (2001). Caspase-activated DNase/DNA fragmentation factor 40 mediates apoptotic DNA fragmentation in transient cerebral ischemia and in neuronal cultures. The Journal of Neuroscience, 21, 4678–4690.CrossRefGoogle Scholar
  17. Cao, G., Luo, Y., Nagayama, T., et al. (2002). Cloning and characterization of rat caspase-9: implications for a role in mediating caspase-3 activation and hippocampal cell death after transient cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 22, 534–546.  https://doi.org/10.1097/00004647-200205000-00005 CrossRefPubMedGoogle Scholar
  18. Carberry, S., Zweyer, M., Swandulla, D., & Ohlendieck, K. (2012). Proteomics reveals drastic increase of extracellular matrix proteins collagen and dermatopontin in the aged mdx diaphragm model of Duchenne muscular dystrophy. International Journal of Molecular Medicine, 30, 229–234.  https://doi.org/10.3892/ijmm.2012.1006 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Carey, H. V., Sills, N. S., & Gorham, D. A. (1999). Stress proteins in mammalian hibernation. American Zoologist, 39, 825–835.  https://doi.org/10.1093/icb/39.6.825 CrossRefGoogle Scholar
  20. Carey, H. V., Rhoads, C. A., & Aw, T. Y. (2003). Hibernation induces glutathione redox imbalance in ground squirrel intestine. Journal of Comparative Physiology B, 173, 269–276.  https://doi.org/10.1007/s00360-003-0330-3 CrossRefGoogle Scholar
  21. Carey, C. C., Gorman, K. F., & Rutherford, S. (2006). Modularity and intrinsic evolvability of Hsp90-buffered change. PLoS One, 20, e76.  https://doi.org/10.1371/journal.pone.0000076 CrossRefGoogle Scholar
  22. Carra, S., Brunsting, J. F., Lambert, H., et al. (2009). HspB8 participates in protein quality control by a non-chaperone-like mechanism that requires eIF2{alpha} phosphorylation. The Journal of Biological Chemistry, 284, 5523–5532.  https://doi.org/10.1074/jbc.M807440200 CrossRefPubMedGoogle Scholar
  23. Carra, S., Alberti, S., Arrigo, P. A., et al. (2017). The growing world of small heat shock proteins: from structure to functions. Cell Stress & Chaperones, 22, 601–611.  https://doi.org/10.1007/s12192-017-0787-8 CrossRefGoogle Scholar
  24. Chang, J., Knowlton, A. A., & Wasser, J. S. (2000). Expression of heat shock proteins in turtle and mammal hearts: relationship to anoxia tolerance. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 278, R209–R214.CrossRefGoogle Scholar
  25. Chen, J., Graham, S. H., Zhu, R. L., & Simon, R. P. (1996). Stress proteins and tolerance to focal cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 16, 566–577.  https://doi.org/10.1097/00004647-199607000-00006 CrossRefPubMedGoogle Scholar
  26. Chen, B., Kayukawa, T., Monteiro, A., & Ishikawa, Y. (2006). Cloning and characterization of the HSP70 Gene, and its expression in response to diapauses and thermal stress in the onion maggot, Delia antiqua. Journal of Biochemistry and Molecular Biology, 39, 749–758.  https://doi.org/10.5483/BMBRep.2006.39.6.749 CrossRefPubMedGoogle Scholar
  27. Chen, H. J., Mitchell, J. C., Novoselov, S., et al. (2016). The heat shock response plays an important role in TDP-43 clearance: Evidence for dysfunction in amyotrophic lateral sclerosis. Brain, 139, 1417–1432.  https://doi.org/10.1093/brain/aww028 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Clark, M. S., Thorne, M. A., Purać, J., et al. (2009). Surviving the cold: molecular analyses of insect cryoprotective dehydration in the Arctic springtail Megaphorura arctica (Tullberg). BMC Genomics, 10, 328.  https://doi.org/10.1186/1471-2164-10-328 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Clegg, J. S. (2002). Cryptobiosis - A peculiar state of biological organization. Tsitologiya, 44, 1011–1014.  https://doi.org/10.1016/S1096-4959(01)00300-1 CrossRefGoogle Scholar
  30. Clegg, J. S. (2007). Protein stability in Artemia embryos during prolonged anoxia. The Biological Bulletin, 212, 74–81.CrossRefGoogle Scholar
  31. Cotton, C. J., & Harlow, H. J. (2015). Avoidance of skeletal muscle atrophy in spontaneous and facultative hibernators. Physiological and Biochemical Zoology, 83, 551–560.  https://doi.org/10.1086/650471. CrossRefGoogle Scholar
  32. De Palma, S., Morandi, L., Mariani, E., et al. (2006). Proteomic investigation of the molecular pathophysiology of dysferlinopathy. Proteomics, 6, 379–385.  https://doi.org/10.1002/pmic.200500098 CrossRefPubMedGoogle Scholar
  33. Dong, Y., Desneux, N., Lei, C., & Niu, C. (2014). Transcriptome characterization analysis of Bactrocera minax and new insights into its pupal diapause development with gene expression analysis. International Journal of Biological Sciences, 10, 1051–1063.  https://doi.org/10.7150/ijbs.9438 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Echtenkamp, F. J., & Freeman, B. C. (2012). Expanding the cellular molecular chaperone network through the ubiquitous cochaperones. Biochimica et Biophysica Acta-Molecular Cell Research, 1823, 668–673.  https://doi.org/10.1016/j.bbamcr.2011.08.011 CrossRefGoogle Scholar
  35. Eddy, S. F., McNally, J. D., & Storey, K. B. (2005). Up-regulation of a thioredoxin peroxidase-like protein, proliferation-associated gene, in hibernating bats. Archives of Biochemistry and Biophysics, 435, 103–111.  https://doi.org/10.1016/j.abb.2004.11.020 CrossRefPubMedGoogle Scholar
  36. Epperson, L. E., Rose, J. C., Carey, H. V., & Martin, S. L. (2010). Seasonal proteomic changes reveal molecular adaptations to preserve and replenish liver proteins during ground squirrel hibernation. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 298, R329–R340.  https://doi.org/10.1152/ajpregu.00416.2009 CrossRefPubMedGoogle Scholar
  37. Fahy, G. M., Wowk, B., Wu, J., et al. (2004). Cryopreservation of organs by vitrification: Perspectives and recent advances. Cryobiology, 48, 157–178.  https://doi.org/10.1016/j.cryobiol.2004.02.002 CrossRefPubMedGoogle Scholar
  38. Feder, M. E., & Hofmann, G. E. (1999). Heat shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annual Review of Physiology, 61, 243–282.CrossRefGoogle Scholar
  39. Frank, C. L., & Storey, K. B. (1995). The optimal depot fat composition for hibernation by golden-mantled ground squirrels (Spermophilus lateralis). Journal of Comparative Physiology B, 164, 536–542.  https://doi.org/10.1007/BF00261394 CrossRefGoogle Scholar
  40. Frerichs, K. U., & Hallenbeck, J. M. (1998). Hibernation in ground squirrels induces state and species-specific tolerance to hypoxia and aglycemia: an in vitro study in hippocampal slices. Journal of Cerebral Blood Flow and Metabolism, 18, 168–175.  https://doi.org/10.1097/00004647-199802000-00007 CrossRefPubMedGoogle Scholar
  41. Frerichs, K. U., Kennedy, C., Sokoloff, L., & Hallenbeck, J. M. (1994). Local cerebral blood flow during hibernation, a model of natural tolerance to “cerebral ischemia”. Journal of Cerebral Blood Flow and Metabolism, 14, 193–205.  https://doi.org/10.1038/jcbfm.1994.26 CrossRefPubMedGoogle Scholar
  42. Gagnon, D. D., Rintamäki, H., Gagnon, S. S., et al. (2013). Cold exposure enhances fat utilization but not non-esterified fatty acids, glycerol or catecholamines availability during submaximal walking and running. Frontiers in Physiology, 4.  https://doi.org/10.3389/fphys.2013.00099
  43. Gao, Y. F., Wang, J., Wang, H. P., et al. (2012). Skeletal muscle is protected from disuse in hibernating dauria ground squirrels. Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology, 161, 296–300.  https://doi.org/10.1016/j.cbpa.2011.11.009 CrossRefGoogle Scholar
  44. Gehrig, S. M., van der Poel, C., Sayer, T. A., et al. (2012). Hsp72 preserves muscle function and slows progression of severe muscular dystrophy. Nature, 484, 394–398.  https://doi.org/10.1038/nature10980 CrossRefGoogle Scholar
  45. Gething, M.-J., & Sambrook, J. (1992). Protein folding in the cell. Nature, 355, 33–45.  https://doi.org/10.1038/355033a0 CrossRefPubMedGoogle Scholar
  46. Giraud-Billoud, M., Vega, I. A., Tosi, M. E. R., et al. (2013). Antioxidant and molecular chaperone defences during estivation and arousal in the South American apple snail Pomacea canaliculata. The Journal of Experimental Biology, 216, 614–622.  https://doi.org/10.1242/jeb.075655 CrossRefPubMedGoogle Scholar
  47. Giwa, S., Lewis, J. K., Alvarez, L., et al. (2017). The promise of organ and tissue preservation to transform medicine. Nature Biotechnology, 35, 530–542.  https://doi.org/10.1038/nbt.3889 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Goldfarb, S. B., Kashlan, O. B., Watkins, J. N., et al. (2006). Differential effects of Hsc70 and Hsp70 on the intracellular trafficking and functional expression of epithelial sodium channels. Proceedings of the National Academy of Sciences of the United States of America, 103, 5817–5822.  https://doi.org/10.1073/pnas.0507903103 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Gomez, A. M., Vanheel, A., Losen, M., et al. (2013). Proteomic analysis of rat tibialis anterior muscles at different stages of experimental autoimmune myasthenia gravis. Journal of Neuroimmunology, 261, 141–145.  https://doi.org/10.1016/j.jneuroim.2013.05.008 CrossRefPubMedGoogle Scholar
  50. Gonzalez–Gronow, M., Selim, M. A., Papalas, J., & Pizzo, S. V. (2009). GRP78: A Multifunctional receptor on the cell surface. Antioxidants & Redox Signaling, 11, 2299–2306.  https://doi.org/10.1089/ars.2009.2568 CrossRefGoogle Scholar
  51. Gorman, A. M., Szegezdi, E., Quigney, D. J., & Samali, A. (2005). Hsp27 inhibits 6-hydroxydopamine-induced cytochrome c release and apoptosis in PC12 cells. Biochemical and Biophysical Research Communications, 327, 801–810.  https://doi.org/10.1016/j.bbrc.2004.12.066 CrossRefPubMedGoogle Scholar
  52. Goyal, K., Walton, L. J., Browne, J. A., et al. (2005). Molecular anhydrobiology: Identifying molecules implicated in invertebrate anhydrobiosis. Integrative and Comparative Biology, 45, 702–709.  https://doi.org/10.1093/icb/45.5.702 CrossRefPubMedGoogle Scholar
  53. Gray, P. C., & Vale, W. (2012). Cripto/GRP78 modulation of the TGF-β pathway in development and oncogenesis. FEBS Letters, 586, 1836–1845.CrossRefGoogle Scholar
  54. Grune, T., Catalgol, B., Licht, A., et al. (2011). HSP70 mediates dissociation and reassociation of the 26S proteasome during adaptation to oxidative stress. Free Radical Biology & Medicine, 51, 1355–1364.  https://doi.org/10.1016/j.freeradbiomed.2011.06.015 CrossRefGoogle Scholar
  55. Gusev, O., Cornette, R., Kikawada, T., & Okuda, T. (2011). Expression of heat shock protein-coding genes associated with anhydrobiosis in an African chironomid Polypedilum vanderplanki. Cell Stress & Chaperones, 16, 81–90.  https://doi.org/10.1007/s12192-010-0223-9 CrossRefGoogle Scholar
  56. Hadj-Moussa, H., Moggridge, J. A., Luu, B. E., et al. (2016). The hibernating South American marsupial, Dromiciops gliroides, displays torpor-sensitive microRNA expression patterns. Scientific Reports, 6, 24627.  https://doi.org/10.1038/srep24627 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Hartl, F. U., Bracher, A., & Hayer-Hartl, M. (2011). Molecular chaperones in protein folding and proteostasis. Nature, 475, 324–332.  https://doi.org/10.1038/nature10317 CrossRefGoogle Scholar
  58. Heldmaier, G., Ortmann, S., & Elvert, R. (2004). Natural hypometabolism during hibernation and daily torpor in mammals. Respiratory Physiology & Neurobiology, 141, 317–329.  https://doi.org/10.1016/j.resp.2004.03.014 CrossRefGoogle Scholar
  59. Hendershot, L., Wei, J., Gaut, J., et al. (1996). Inhibition of immunoglobulin folding and secretion by dominant negative BiP ATPase mutants. Proceedings of the National Academy of Sciences of the United States of America, 93, 5269–5274.  https://doi.org/10.1073/pnas.93.11.5269 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Hengherr, S., Worland, M. R., Reuner, A., et al. (2009). High-Temperature tolerance in anhydrobiotic tardigrades is limited by glass transition. Physiological and Biochemical Zoology, 82, 749–755.  https://doi.org/10.1086/605954 CrossRefPubMedGoogle Scholar
  61. Herbert, V., & Jackson, D. C. (1985). Temperature effects on the responses to prolonged submergence in the turtle Chrysemys picta bellii. II. Metabolic rate, blood acid-base and ionic changes, and cardiovascular function in aerated and anoxic water. Physiological Zoology, 58, 670–681.  https://doi.org/10.1086/physzool.58.6.30156071 CrossRefGoogle Scholar
  62. Hermes-Lima, M., & Zenteno-Savín, T. (2002). Animal response to drastic changes in oxygen availability and physiological oxidative stress. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 133, 537–556.  https://doi.org/10.1016/S1532-0456(02)00080-7 CrossRefGoogle Scholar
  63. Hetz, C. (2012). The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nature Reviews. Molecular Cell Biology, 13, 89–102.  https://doi.org/10.1038/nrm3270 CrossRefGoogle Scholar
  64. Hillman, S. S. (1978). The roles of oxygen delivery and electrolyte levels in the dehydrational death of Xenopus laevis. Journal of Comparative Physiology B, 128, 169–175.  https://doi.org/10.1007/BF00689481 CrossRefGoogle Scholar
  65. Hittel, D., & Storey, K. B. (2002). The translation state of differentially expressed mRNAs in the hibernating 13-lined ground squirrel (Spermophilus tridecemlineatus). Archives of Biochemistry and Biophysics, 401, 244–254.  https://doi.org/10.1016/S0003-9861(02)00048-6 CrossRefPubMedGoogle Scholar
  66. Hochachka, P. W., & Lutz, P. L. (2001). Mechanism, origin, and evolution of anoxia tolerance in animals. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 130, 435–459.  https://doi.org/10.1016/S1096-4959(01)00408-0 CrossRefGoogle Scholar
  67. Hochachka, P. W., Buck, L. T., Doll, C. J., & Land, S. C. (1996). Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proceedings of the National Academy of Sciences of the United States of America, 93, 9493–9498.  https://doi.org/10.1073/pnas.93.18.9493 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Holmstrup, M., & Westh, P. (1994). Dehydration of earthworm cocoons exposed to cold: a novel cold hardiness mechanism. Journal of Comparative Physiology B, 164, 312–315.  https://doi.org/10.1007/BF00346448 CrossRefGoogle Scholar
  69. Hori, O., Matsumoto, M., Kuwabara, K., et al. (1996). Exposure of astrocytes to hypoxia/reoxygenation enhances expression of glucose-regulated protein 78 facilitating astrocyte release of the neuroprotective cytokine interleukin 6. Journal of Neurochemistry, 66, 973–979.CrossRefGoogle Scholar
  70. Horikawa, D. D., Sakashita, T., Katagiri, C., et al. (2006). Radiation tolerance in the tardigrade Milnesium tardigradum. International Journal of Radiation Biology, 82, 843–848.  https://doi.org/10.1080/09553000600972956 CrossRefPubMedGoogle Scholar
  71. Horwich, A. L., Fenton, W. A., Chapman, E., & Farr, G. W. (2007). Two families of chaperonin: physiology and mechanism. Annual Review of Cell and Developmental Biology, 23, 115–145.  https://doi.org/10.1146/annurev.cellbio.23.090506.123555 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Houry, W. A., Frishman, D., Eckerskorn, C., et al. (1999). Identifcation of in vivo substrates of the chaperonin GroEL. Nature, 402, 147–154.  https://doi.org/10.1038/45977 CrossRefPubMedGoogle Scholar
  73. Jackson, D. C. (1968). Metabolic depression and oxygen depletion in the diving turtle. Journal of Applied Physiology, 24, 503–509.CrossRefGoogle Scholar
  74. Jackson, D. C. (2002). Hibernating without oxygen: Physiological adaptations of the painted turtle. The Journal of Physiology, 543, 731–737.  https://doi.org/10.1113/jphysiol.2002.024729 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Jacob, P., Hirt, H., & Bendahmane, A. (2017). The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnology Journal, 15, 405–414.  https://doi.org/10.1111/pbi.12659 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Joanisse, D. R., & Storey, K. B. (1994). Mitochondrial enzymes during overwintering in two species of cold-hardy gall insects. Insect Biochemistry and Molecular Biology, 24, 145–150.  https://doi.org/10.1016/0965-1748(94)90080-9 CrossRefGoogle Scholar
  77. Kampinga, H. H., Hageman, J., Vos, M. J., et al. (2009). Guidelines for the nomenclature of the human heat shock proteins. Cell Stress & Chaperones, 14, 105–111.  https://doi.org/10.1007/s12192-008-0068-7 CrossRefGoogle Scholar
  78. Kato, H., Liu, Y., Kogure, K., & Kato, K. (1994). Induction of 27-kDa heat shock protein following cerebral ischemia in a rat model of ischemic tolerance. Brain Research, 634, 235–244.CrossRefGoogle Scholar
  79. Kayukawa, T., & Ishikawa, Y. (2009). Chaperonin contributes to cold hardiness of the onion maggot Delia antiqua through repression of depolymerization of actin at low temperatures. PLoS One, 4, e8277.  https://doi.org/10.1371/journal.pone.0008277 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Kesaraju, S., Schmidt-Kastner, R., Prentice, H. M., & Milton, S. L. (2009). Modulation of stress proteins and apoptotic regulators in the anoxia tolerant turtle brain. Journal of Neurochemistry, 109, 1413–1426.  https://doi.org/10.1111/j.1471-4159.2009.06068.x CrossRefPubMedPubMedCentralGoogle Scholar
  81. Kesaraju, S., Nayak, G., Prentice, H. M., & Milton, S. L. (2014). Upregulation of Hsp72 mediates anoxia/reoxygenation neuroprotection in the freshwater turtle via modulation of ROS. Brain Research, 1582, 247–256.  https://doi.org/10.1016/j.brainres.2014.07.044 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Kim, S. W., Park, S., You, K. H., & Kwon, O. Y. (2003). Expression of the endoplasmic reticulum chaperone GRP94 gene in ischemic gerbil brain. Zeitschrift für Naturforschung. Section C, 58, 736–739.Google Scholar
  83. Kirino, T. (2002). Ischemic tolerance. Journal of Cerebral Blood Flow and Metabolism, 22, 1283–1296.  https://doi.org/10.1097/00004647-200211000-00001. CrossRefPubMedGoogle Scholar
  84. Klucken, J., Shin, Y., Masliah, E., et al. (2004). Hsp70 reduces α-synuclein aggregation and toxicity. The Journal of Biological Chemistry, 279, 25497–25502.  https://doi.org/10.1074/jbc.M400255200 CrossRefPubMedGoogle Scholar
  85. Krivoruchko, A., & Storey, K. B. (2010). Regulation of the heat shock response under anoxia in the turtle, Trachemys scripta elegans. Journal of Comparative Physiology B, 180, 403–414.  https://doi.org/10.1007/s00360-009-0414-9 CrossRefGoogle Scholar
  86. Krukenberg, K. A., Street, T. O., Lavery, L. A., & Agard, D. A. (2011). Conformational dynamics of the molecular chaperone Hsp90. Quarterly Reviews of Biophysics, 44, 229–255.  https://doi.org/10.1017/S0033583510000314 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Kudo, T., Kanemoto, S., Hara, H., et al. (2008). A molecular chaperone inducer protects neurons from ER stress. Cell Death and Differentiation, 15, 364–375.  https://doi.org/10.1038/sj.cdd.4402276 CrossRefPubMedGoogle Scholar
  88. Kültz, D. (2004). Molecular and evolutionary basis of the cellular stress response. Annual Review of Physiology, 67, 225–257.  https://doi.org/10.1146/annurev.physiol.67.040403.103635. CrossRefGoogle Scholar
  89. Lee, A. S. (2014). Glucose-regulated proteins in cancer: Molecular mechanisms and therapeutic potential. Nature Reviews Cancer, 14, 263–276.  https://doi.org/10.1038/nrc3701 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Lee, M., Choi, I., & Park, K. (2002). Activation of stress signaling molecules in bat brain during arousal from hibernation. Journal of Neurochemistry, 82, 867–873.  https://doi.org/10.1046/j.1471-4159.2002.01022.x CrossRefPubMedGoogle Scholar
  91. Lee, K., Joo, Y. P., Yoo, W., et al. (2008). Overcoming muscle atrophy in a hibernating mammal despite prolonged disuse in dormancy: Proteomic and molecular assessment. Journal of Cellular Biochemistry, 104, 642–656.  https://doi.org/10.1002/jcb.21653 CrossRefPubMedGoogle Scholar
  92. Levin, D. B., Danks, H. V., & Barber, S. A. (2003). Variations in mitochondrial DNA and gene transcription in freezing-tolerant larvae of Eurosta solidaginis (Diptera: Tephritidae) and Gynaephora groenlandica (Lepidoptera: Lymantriidae). Insect Molecular Biology, 12, 281–289.  https://doi.org/10.1046/j.1365-2583.2003.00413.x CrossRefPubMedGoogle Scholar
  93. Lewis, C., Carberry, S., & Ohlendieck, K. (2009). Proteomic profiling of x-linked muscular dystrophy. Journal of Muscle Research and Cell Motility, 30, 267–279.CrossRefGoogle Scholar
  94. Li, M.-L., Defren, J., & Brewer, G. (2013). Hsp27 and F-box protein β-TrCP promote degradation of mRNA decay factor AUF1. Molecular and Cellular Biology, 33, 2315–2326.  https://doi.org/10.1128/MCB.00931-12 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Lindell, S. L., Klahn, S. L., Piazza, T. M., et al. (2005). Natural resistance to liver cold ischemia-reperfusion injury associated with the hibernation phenotype. American Journal of Physiology. Gastrointestinal and Liver Physiology, 288, G473–G480.  https://doi.org/10.1152/ajpgi.00223.2004 CrossRefPubMedGoogle Scholar
  96. Liu, B., Wohlfart, B., & Johansson, B. W. (1990). Effects of low temperature on contraction in papillary muscles from rabbit, rat, and hedgehog. Cryobiology, 27, 539–546.  https://doi.org/10.1016/0011-2240(90)90041-2 CrossRefPubMedGoogle Scholar
  97. Liu, B., Wang, L. C. H., & Belke, D. D. (1993). Effects of temperature and pH on cardiac myofilament Ca-2+ sensitivity in rat and ground squirrel. The American Journal of Physiology, 264, R104–R108.CrossRefGoogle Scholar
  98. Liu, R., Li, X., Gao, W., et al. (2013). Monoclonal antibody against cell surface GRP78 as a novel agent in suppressing PI3K/AKT signaling, tumor growth, and metastasis. Clinical Cancer Research, 19, 6802–6811.  https://doi.org/10.1158/1078-0432.CCR-13-1106 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Logan, S. M., Luu, B. E., & Storey, K. B. (2016a). Turn down genes for WAT? Activation of anti-apoptosis pathways protects white adipose tissue in metabolically depressed thirteen-lined ground squirrels. Molecular and Cellular Biochemistry, 416, 47–62.  https://doi.org/10.1007/s11010-016-2695-0 CrossRefPubMedGoogle Scholar
  100. Logan, S. M., Tessier, S. N., Tye, J., & Storey, K. B. (2016b). Response of the JAK-STAT pathway to mammalian hibernation in 13-lined ground squirrel striated muscle. Molecular and Cellular Biochemistry, 414, 115–127.  https://doi.org/10.1007/s11010-016-2665-6 CrossRefPubMedGoogle Scholar
  101. Lopez-Martinez, G., Elnitsky, M. A., Benoit, J. B., et al. (2008). High resistance to oxidative damage in the Antarctic midge Belgica antarctica, and developmentally linked expression of genes encoding superoxide dismutase, catalase and heat shock proteins. Insect Biochemistry and Molecular Biology, 38, 796–804.  https://doi.org/10.1016/j.ibmb.2008.05.006 CrossRefPubMedGoogle Scholar
  102. Lu, H. A. J., Sun, T. X., Matsuzaki, T., et al. (2007). Heat shock protein 70 interacts with aquaporin-2 and regulates its trafficking. The Journal of Biological Chemistry, 282, 28721–28732.  https://doi.org/10.1074/jbc.M611101200 CrossRefPubMedGoogle Scholar
  103. Luo, B., & Lee, A. S. (2013). The critical roles of endoplasmic reticulum chaperones and unfolded protein response in tumorigenesis and anticancer therapies. Oncogene, 32, 805–818.  https://doi.org/10.1038/onc.2012.130 CrossRefPubMedGoogle Scholar
  104. Luo, S., Mao, C., Lee, B., & Lee, A. S. (2006). GRP78/BiP is required for cell proliferation and protecting the inner cell mass from apoptosis during early mouse embryonic development. Molecular and Cellular Biology, 26, 5688–5697.  https://doi.org/10.1128/MCB.00779-06 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Luu, B. E., Biggar, K. K., Wu, C.-W., & Storey, K. B. (2016). Torpor-responsive expression of novel microRNA regulating metabolism and other cellular pathways in the thirteen-lined ground squirrel, Ictidomys tridecemlineatus. FEBS Letters, 590, 3574–3582.  https://doi.org/10.1002/1873-3468.12435 CrossRefPubMedGoogle Scholar
  106. Luu, B. E., Wijenayake, S., Malik, A. I., & Storey, K. B. (2017). The regulation of heat shock proteins in response to dehydration in Xenopus laevis. Cell Stress & Chaperones, 23(1), 45–53.  https://doi.org/10.1007/s12192-017-0822-9 CrossRefGoogle Scholar
  107. Ma, Y., & Hendershot, L. M. (2004). The role of the unfolded protein response in tumour development: friend or foe? Nature Reviews. Cancer, 4, 966–977.  https://doi.org/10.1038/nrc1505 CrossRefPubMedGoogle Scholar
  108. Ma, T., Liu, X., & Liu, Z. (2015). Role of asymmetric dimethylarginine in rat acute lung injury induced by acute ischemic kidney injury. Molecular Medicine Reports, 12, 1923–1928.  https://doi.org/10.3892/mmr.2015.3619 CrossRefPubMedGoogle Scholar
  109. MacRae, T. H. (2016). Stress tolerance during diapause and quiescence of the brine shrimp, Artemia. Cell Stress & Chaperones, 21, 9–18.  https://doi.org/10.1007/s12192-015-0635-7 CrossRefGoogle Scholar
  110. Malik, A. I., & Storey, K. B. (2009a). Activation of antioxidant defense during dehydration stress in the African clawed frog. Gene, 442, 99–107.  https://doi.org/10.1016/j.gene.2009.04.007 CrossRefPubMedGoogle Scholar
  111. Malik, A. I., & Storey, K. B. (2009b). Activation of extracellular signal-regulated kinases during dehydration in the African clawed frog, Xenopus laevis. The Journal of Experimental Biology, 212, 2595–2603.  https://doi.org/10.1242/jeb.030627 CrossRefPubMedGoogle Scholar
  112. Malik, A. I., & Storey, K. B. (2011). Transcriptional regulation of antioxidant enzymes by FoxO1 under dehydration stress. Gene, 485, 114–119.  https://doi.org/10.1016/j.gene.2011.06.014 CrossRefPubMedGoogle Scholar
  113. Mamady, H., & Storey, K. B. (2006). Up-regulation of the endoplasmic reticulum molecular chaperone GRP78 during hibernation in thirteen-lined ground squirrels. Molecular and Cellular Biochemistry, 292, 89–98.  https://doi.org/10.1007/s11010-006-9221-8 CrossRefPubMedGoogle Scholar
  114. Mamady, H., & Storey, K. B. (2008). Coping with the stress: Expression of ATF4, ATF6, and downstream targets in organs of hibernating ground squirrels. Archives of Biochemistry and Biophysics, 477, 77–85.  https://doi.org/10.1016/j.abb.2008.05.006 CrossRefPubMedGoogle Scholar
  115. Mayer, M. P., & Bukau, B. (2005). Hsp70 chaperones: Cellular functions and molecular mechanism. Cellular and Molecular Life Sciences, 62, 670–684.  https://doi.org/10.1007/s00018-004-4464-6 CrossRefPubMedPubMedCentralGoogle Scholar
  116. McMullen, D. C., & Storey, K. B. (2008). Mitochondria of cold hardy insects: Responses to cold and hypoxia assessed at enzymatic, mRNA and DNA levels. Insect Biochemistry and Molecular Biology, 38, 367–373.  https://doi.org/10.1016/j.ibmb.2007.12.003 CrossRefPubMedGoogle Scholar
  117. Mehta, S. L., Manhas, N., & Raghubir, R. (2007). Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Research Reviews, 54, 34–66.CrossRefGoogle Scholar
  118. Michie, L. J., Mallard, F., Majerus, M. E. N., & Jiggins, F. M. (2010). Melanic through nature or nurture: Genetic polymorphism and phenotypic plasticity in Harmonia axyridis. Journal of Evolutionary Biology, 23, 1699–1707.  https://doi.org/10.1111/j.1420-9101.2010.02043.x CrossRefPubMedGoogle Scholar
  119. Minamino, T., Komuro, I., & Kitakaze, M. (2010). Endoplasmic reticulum stress as a therapeutic target in cardiovascular disease. Circulation Research, 107, 1071–1082.CrossRefGoogle Scholar
  120. Mizrahi, T., Heller, J., Goldenberg, S., & Arad, Z. (2010). Heat shock proteins and resistance to desiccation in congeneric land snails. Cell Stress & Chaperones, 15, 351–363.  https://doi.org/10.1007/s12192-009-0150-9 CrossRefGoogle Scholar
  121. Mizukoshi, E., Suzuki, M., Loupatov, A., et al. (1999). Fibroblast growth factor-1 interacts with the glucose-regulated protein GRP75/mortalin. Biochemical Journal, 343, 461.  https://doi.org/10.1042/0264-6021:3430461 CrossRefPubMedPubMedCentralGoogle Scholar
  122. Morin, P., & Storey, K. B. (2009). Mammalian hibernation: Differential gene expression and novel application of epigenetic controls. The International Journal of Developmental Biology, 53, 433–442.CrossRefGoogle Scholar
  123. Motojima, F., Chaudhry, C., Fenton, W. A., et al. (2004). Substrate polypeptide presents a load on the apical domains of the chaperonin GroEL. Proceedings of the National Academy of Sciences of the United States of America, 101, 15005–15012.  https://doi.org/10.1073/pnas.0406132101 CrossRefPubMedPubMedCentralGoogle Scholar
  124. Muntoni, F., Torelli, S., & Ferlini, A. (2003). Dystrophin and mutations: One gene, several proteins, multiple phenotypes. Lancet Neurology, 2, 731–740.CrossRefGoogle Scholar
  125. Mutsaers, C. A., Lamont, D. J., Hunter, G., et al. (2013). Label-free proteomics identifies Calreticulin and GRP75/Mortalin as peripherally accessible protein biomarkers for spinal muscular atrophy. Genome Medicine, 5, 95.  https://doi.org/10.1186/gm498 CrossRefPubMedPubMedCentralGoogle Scholar
  126. Ni, M., Zhang, Y., & Lee, A. S. (2011). Beyond the endoplasmic reticulum: atypical GRP78 in cell viability, signaling and therapeutic targeting. Biochemical Journal, 434, 181–188.  https://doi.org/10.1042/BJ20101569 CrossRefPubMedPubMedCentralGoogle Scholar
  127. Niforou, K., Cheimonidou, C., & Trougakos, I. P. (2014). Molecular chaperones and proteostasis regulation during redox imbalance. Redox Biology, 2, 323–332.  https://doi.org/10.1016/j.redox.2014.01.017 CrossRefPubMedPubMedCentralGoogle Scholar
  128. Nishi, S., Taki, W., Uemura, Y., et al. (1993). Ischemic tolerance due to the induction of HSP70 in a rat ischemic recirculation model. Brain Research, 615, 281–288.CrossRefGoogle Scholar
  129. Pandey, P., Saleh, A., Nakazawa, A., et al. (2000). Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. The EMBO Journal, 19, 4310–4322.  https://doi.org/10.1093/emboj/19.16.4310 CrossRefPubMedPubMedCentralGoogle Scholar
  130. Prentice, H. M., Milton, S. L., Scheurle, D., & Lutz, P. L. (2004). The upregulation of cognate and inducible heat shock proteins in the anoxic turtle brain. Journal of Cerebral Blood Flow and Metabolism, 24, 826–828.  https://doi.org/10.1097/01.WCB.0000126565.27130.79 CrossRefPubMedGoogle Scholar
  131. Prostko, C. R., Brostrom, M. A., Malara, E. M., & Brostrom, C. O. (1992). Phosphorylation of eukaryotic initiation factor (eIF) 2α and inhibition of eIF-2B in GH3 pituitary cells by perturbants of early protein processing that induce GRP78. The Journal of Biological Chemistry, 267, 16751–16754.PubMedGoogle Scholar
  132. Qiu, Z., & Macrae, T. H. (2008a). ArHsp21, a developmentally regulated small heat-shock protein synthesized in diapausing embryos of Artemia franciscana. Biochemical Journal, 411, 605–611.  https://doi.org/10.1042/BJ20071472 CrossRefPubMedGoogle Scholar
  133. Qiu, Z., & MacRae, T. H. (2008b). ArHsp22, a developmentally regulated small heat shock protein produced in diapause-destined Artemia embryos, is stress inducible in adults. The FEBS Journal, 275, 3556–3566.  https://doi.org/10.1111/j.1742-4658.2008.06501.x CrossRefPubMedGoogle Scholar
  134. Radons, J. (2016). The human HSP70 family of chaperones: Where do we stand? Cell Stress & Chaperones, 21, 379–404.  https://doi.org/10.1007/s12192-016-0676-6 CrossRefGoogle Scholar
  135. Ramaglia, V. (2004). Time-dependent expression of heat shock proteins 70 and 90 in tissues of the anoxic western painted turtle. The Journal of Experimental Biology, 207, 3775–3784.  https://doi.org/10.1242/jeb.01211 CrossRefPubMedGoogle Scholar
  136. Ramløv, H., & Westh, P. (1992). Survival of the cryptobiotic eutardigrade Adorybiotus coronifer during cooling to -196 °C: Effect of cooling rate, trehalose level, and short-term acclimation. Cryobiology, 29, 125–130.  https://doi.org/10.1016/0011-2240(92)90012-Q CrossRefGoogle Scholar
  137. Ramnanan, C. J., Allan, M. E., Groom, A. G., & Storey, K. B. (2009). Regulation of global protein translation and protein degradation in aerobic dormancy. Molecular and Cellular Biochemistry, 323, 9–20.  https://doi.org/10.1007/s11010-008-9959-2 CrossRefPubMedGoogle Scholar
  138. Ranford, J. C., Coates, A. R., & Henderson, B. (2000). Chaperonins are cell-signalling proteins: The unfolding biology of molecular chaperones. Expert Reviews in Molecular Medicine, 2, 1–17.  https://doi.org/10.1017/S1462399400002015 CrossRefPubMedGoogle Scholar
  139. Rasmussen, S., Barah, P., Suarez-Rodriguez, M. C., et al. (2013). Transcriptome responses to combinations of stresses in arabidopsis. Plant Physiology, 161, 1783–1794.  https://doi.org/10.1104/pp.112.210773 CrossRefPubMedPubMedCentralGoogle Scholar
  140. Reddy, G., Kumar, P., & Kumar, M. (2006). Chaperone-like activity and hydrophobicity of α-crystallin. IUBMB Life, 58, 632–641.  https://doi.org/10.1080/15216540601010096. CrossRefPubMedGoogle Scholar
  141. Reuner, A., Brümmer, F., & Schill, R. O. (2008). Heat shock proteins (Hsp70) and water content in the estivating Mediterranean Grunt Snail (Cantareus apertus). Comparative Biochemistry and Physiology - Part B: Biochemistry & Molecular Biology, 151, 28–31.  https://doi.org/10.1016/j.cbpb.2008.05.004 CrossRefGoogle Scholar
  142. Reuner, A., Hengherr, S., Mali, B., et al. (2010). Stress response in tardigrades: Differential gene expression of molecular chaperones. Cell Stress & Chaperones, 15, 423–430.  https://doi.org/10.1007/s12192-009-0158-1 CrossRefGoogle Scholar
  143. Richards, R. C., Achenbach, J. C., Short, C. E., et al. (2008). Seasonal expressed sequence tags of rainbow smelt (Osmerus mordax) revealed by subtractive hybridization and the identification of two genes up-regulated during winter. Gene, 424, 56–62.  https://doi.org/10.1016/j.gene.2008.08.002 CrossRefPubMedGoogle Scholar
  144. Rinehart, J. P., Hayward, S. A. L., Elnitsky, M. A., et al. (2006). Continuous up-regulation of heat shock proteins in larvae, but not adults, of a polar insect. Proceedings of the National Academy of Sciences of the United States of America, 103, 14223–14227.  https://doi.org/10.1073/pnas.0606840103 CrossRefPubMedPubMedCentralGoogle Scholar
  145. Ron, D., & Walter, P. (2007). Signal integration in the endoplasmic reticulum unfolded protein response. Nature Reviews. Molecular Cell Biology, 8, 519–529.  https://doi.org/10.1038/nrm2199 CrossRefGoogle Scholar
  146. Rouble, A. N., Hefler, J., Mamady, H., et al. (2013). Anti-apoptotic signaling as a cytoprotective mechanism in mammalian hibernation. PeerJ, 1, e29.  https://doi.org/10.7717/peerj.29 CrossRefPubMedPubMedCentralGoogle Scholar
  147. Rousseau, F., Serrano, L., & Schymkowitz, J. W. H. (2006). How evolutionary pressure against protein aggregation shaped chaperone specificity. Journal of Molecular Biology, 355, 1037–1047.  https://doi.org/10.1016/j.jmb.2005.11.035 CrossRefPubMedGoogle Scholar
  148. Rüdiger, S., Buchberger, A., & Bukau, B. (1997). Interaction of Hsp70 chaperones with substrates. Nature Structural Biology, 4, 342–349.  https://doi.org/10.1038/nsb0597-342 CrossRefPubMedGoogle Scholar
  149. Saibil, H. (2013). Chaperone machines for protein folding, unfolding and disaggregation. Nature Reviews. Molecular Cell Biology, 14, 630–642.  https://doi.org/10.1038/nrm3658 CrossRefPubMedPubMedCentralGoogle Scholar
  150. Saito, A., Tominaga, T., & Chan, P. H. (2005). Neuroprotective role of neurotrophins: relationship between nerve growth factor and apoptotic cell survival pathway after cerebral ischemia. Current Atherosclerosis Reports, 7, 268–273.CrossRefGoogle Scholar
  151. Sanson, M., Augé, N., Vindis, C., et al. (2009). Oxidized low-density lipoproteins trigger endoplasmic reticulum stress in vascular cells: Prevention by oxygen-regulated protein 150 expression. Circulation Research, 104, 328–336.  https://doi.org/10.1161/CIRCRESAHA.108.183749 CrossRefPubMedGoogle Scholar
  152. Schmid, J. (2001). Daily torpor in free-ranging gray mouse lemurs (Microcebus murinus) in Madagascar. International Journal of Primatology, 22, 1021–1031.  https://doi.org/10.1023/A:1012069706237. CrossRefGoogle Scholar
  153. Schmid, J., & Ganzhorn, J. U. (2009). Optional strategies for reduced metabolism in gray mouse lemurs. Naturwissenschaften, 96, 737–741.  https://doi.org/10.1007/s00114-009-0523-z CrossRefPubMedGoogle Scholar
  154. Schopf, F., Biebl, M., & Buchner, J. (2017). The Hsp90 chaperone machinery. Nature Reviews. Molecular Cell Biology, 18, 345–360.  https://doi.org/10.1038/nrm.2017.20 CrossRefPubMedGoogle Scholar
  155. Schröder, M., & Kaufman, R. J. (2005). The Mammalian Unfolded Protein Response. Annual Review of Biochemistry, 74, 739–789.  https://doi.org/10.1146/annurev.biochem.73.011303.074134 CrossRefPubMedGoogle Scholar
  156. Seki, K., & Toyoshima, M. (1998). Preserving tardigrades under pressure. Nature, 395, 853–854.  https://doi.org/10.1038/27576 CrossRefGoogle Scholar
  157. Sela, I., Krentsis, I. M., Shlomai, Z., et al. (2011). The proteomic profile of hereditary inclusion body myopathy. PLoS One, 6, e16334.  https://doi.org/10.1371/journal.pone.0016334 CrossRefPubMedPubMedCentralGoogle Scholar
  158. Serkova, N. N. J., Rose, J. J. C., Epperson, L. E., et al. (2007). Quantitative analysis of liver metabolites in three stages of the circannual hibernation cycle in 13-lined ground squirrels by NMR. Physiological Genomics, 31, 15–24.  https://doi.org/10.1152/physiolgenomics.00028.2007 CrossRefPubMedGoogle Scholar
  159. Shiu, R. P., Pouyssegur, J., & Pastan, I. (1977). Glucose depletion accounts for the induction of two transformation-sensitive membrane proteinsin Rous sarcoma virus-transformed chick embryo fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 74, 3840–3844.CrossRefGoogle Scholar
  160. Shoshana, G. Z. A., & Heller, J. (1989). Resistance to desiccation and distribution patterns in the land snail Sphincterochila. Journal of Zoology, 218, 353–364.  https://doi.org/10.1111/j.1469-7998.1989.tb02549.x CrossRefGoogle Scholar
  161. Storey, K. B. (1997). Organic Solutes in Freezing Tolerance. Comparative Biochemistry and Physiology. Part A, Physiology, 117, 319–326.  https://doi.org/10.1016/S0300-9629(96)00270-8 CrossRefPubMedGoogle Scholar
  162. Storey, K. B. (2002). Natural hypothermic preservation: The mammalian hibernator. Cell Preservation and Technology, 1, 3–16.  https://doi.org/10.1089/15383440260073257 CrossRefGoogle Scholar
  163. Storey, K. B. (2003). Mammalian hibernation. Transcriptional and translational controls. Advances in Experimental Medicine and Biology, 543, 21–38.CrossRefGoogle Scholar
  164. Storey, K. B. (2007). Anoxia tolerance in turtles: Metabolic regulation and gene expression. Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology, 147, 263–276.  https://doi.org/10.1016/j.cbpa.2006.03.019 CrossRefGoogle Scholar
  165. Storey, K. B. (2010). Out cold: Biochemical regulation of mammalian hibernation - A mini-review. Gerontology, 56, 220–230.CrossRefGoogle Scholar
  166. Storey, K. B., & Storey, J. M. (2004). Metabolic rate depression in animals: Transcriptional and translational controls. Biological Reviews of the Cambridge Philosophical Society, 79, 207–233.  https://doi.org/10.1017/S1464793103006195 CrossRefPubMedGoogle Scholar
  167. Storey, K. B., & Storey, J. M. (2007). Tribute to P. L. Lutz: putting life on ‘pause’ - molecular regulation of hypometabolism. The Journal of Experimental Biology, 210, 1700–1714.  https://doi.org/10.1242/jeb.02716 CrossRefPubMedGoogle Scholar
  168. Storey, K. B., & Storey, J. M. (2010a). Metabolic regulation and gene expression during aestivation. Progress in Molecular and Subcellular Biology, 49, 25–45.CrossRefGoogle Scholar
  169. Storey, K. B., & Storey, J. M. (2010b). Metabolic rate depression. The biochemistry of mammalian hibernation. Advances in Clinical Chemistry, 52, 77–108.CrossRefGoogle Scholar
  170. Sugg, P., Edwards, J. S., & Baust, J. (1983). Phenology and life history of an Antarctic midge, Belgica antarctica (Diptera: Chironomidae). Ecological Entomology, 8, 105–113.CrossRefGoogle Scholar
  171. Swindell, W. R., Huebner, M., & Weber, A. P. (2007). Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics, 8, 125.  https://doi.org/10.1186/1471-2164-8-125 CrossRefPubMedPubMedCentralGoogle Scholar
  172. Trougakos, I. P., Sesti, F., Tsakiri, E., & Gorgoulis, V. G. (2013). Non-enzymatic post-translational protein modifications and proteostasis network deregulation in carcinogenesis. Journal of Proteomics, 92, 274–298.CrossRefGoogle Scholar
  173. Tseng, Y. Z. C. C., Tsai, Y. L., Fu, X., et al. (2013). Cancer cells resistant to therapy promote cell surface relocalization of GRP78 which complexes with PI3K and enhances PI (3,4,5)P3 production. PLoS One, 8, e80071.  https://doi.org/10.1371/journal.pone.0080071 CrossRefPubMedPubMedCentralGoogle Scholar
  174. Ultsch, G. R. (1989). Ecology and physiology of hibernation and overwintering among freshwater fishes, turtles, and snakes. Biological Reviews, 64, 435–515.  https://doi.org/10.1111/j.1469-185X.1989.tb00683.x CrossRefGoogle Scholar
  175. Vashist, S., & Ng, D. T. W. (2004). Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control. The Journal of Cell Biology, 165, 41–52.  https://doi.org/10.1083/jcb.200309132 CrossRefPubMedPubMedCentralGoogle Scholar
  176. Verras, M., Papandreou, I., Lim, A. L., & Denko, N. C. (2008). Tumor hypoxia blocks Wnt processing and secretion through the induction of endoplasmic reticulum stress. Molecular and Cellular Biology, 28, 7212–7224.  https://doi.org/10.1128/MCB.00947-08 CrossRefPubMedPubMedCentralGoogle Scholar
  177. Vertommen, D., Herinckx, G., Hussain, N., et al. (2017). Changes in the phosphoproteome of brown adipose tissue during hibernation in the ground squirrel, Ictidomys tridecemlineatus. Physiological Genomics, 49, 462–472.  https://doi.org/10.1152/physiolgenomics.00038.2017 CrossRefPubMedGoogle Scholar
  178. Vidyasagar, A., Wilson, N. A., & Djamali, A. (2012). Heat shock protein 27 (HSP27): biomarker of disease and therapeutic target. Fibrogenesis & Tissue Repair, 5, 7.  https://doi.org/10.1186/1755-1536-5-7 CrossRefGoogle Scholar
  179. Wang, L. C. H., & Lee, T. F. (2011). Torpor and hibernation in mammals: Metabolic, physiological, and biochemical adaptations. Comprehensive Physiology, 507–532. https://doi.org/10.1002/cphy.cp040122
  180. Wang, K., & Spector, A. (1996). Alpha-crystallin stabilizes actin filaments and prevents cytochalasin-induced depolymerization in a phosphorylation-dependent manner. European Journal of Biochemistry, 242, 56–66.  https://doi.org/10.1111/j.1432-1033.1996.0056r.x CrossRefPubMedGoogle Scholar
  181. Wang, S., Zhou, Z., & Qian, H. (2000). Recording of calcium transient and analysis of calcium removal mechanisms in cardiac myocytes from rats and ground squirrels. Science in China. Series C, Life Sciences, 43, 191–199.  https://doi.org/10.1007/BF02879128 CrossRefPubMedGoogle Scholar
  182. Wang, S., Michaud, J. P., Zhang, R., et al. (2009). Seasonal cycles of assortative mating and reproductive behaviour in polymorphic populations of Harmonia axyridis in China. Ecological Entomology, 34, 483–494.  https://doi.org/10.1111/j.1365-2311.2008.01075.x CrossRefGoogle Scholar
  183. Wang, M., Ye, R., Barron, E., et al. (2010). Essential role of the unfolded protein response regulator GRP78/BiP in protection from neuronal apoptosis. Cell Death and Differentiation, 17, 488–498.  https://doi.org/10.1038/cdd.2009.144 CrossRefPubMedGoogle Scholar
  184. Wang, H.-J., Shi, Z.-K., Shen, Q.-D., et al. (2017). Molecular cloning and induced expression of six small heat shock proteins mediating cold-hardiness in Harmonia axyridis (Coleoptera: Coccinellidae). Frontiers in Physiology, 8, 1–15.  https://doi.org/10.3389/fphys.2017.00060 CrossRefGoogle Scholar
  185. Watanabe, M. (2002). Cold tolerance and myo-inositol accumulation in overwintering adults of a lady beetle, Harmonia axyridis (Coleoptera: Coccinellidae). European Journal of Entomology, 99, 5–9.CrossRefGoogle Scholar
  186. Watanabe, M. (2006). Anhydrobiosis in invertebrates. Applied Entomology and Zoology, 41, 15–31.  https://doi.org/10.1303/aez.2006.15 CrossRefGoogle Scholar
  187. Weatherhead, E. C., & Andersen, S. B. (2006). The search for signs of recovery of the ozone layer. Nature, 441, 39–45.  https://doi.org/10.1038/nature04746 CrossRefPubMedGoogle Scholar
  188. van der Weerd, L., Lythgoe, M. F., Badin, R. A., et al. (2005). Neuroprotective effects of HSP70 overexpression after cerebral ischaemia–an MRI study. Experimental Neurology, 195, 257–266.  https://doi.org/10.1016/j.expneurol.2005.05.002 CrossRefPubMedGoogle Scholar
  189. Wey, S., Luo, B., & Lee, A. S. (2012). Acute inducible ablation of GRP78 reveals its role in hematopoietic stem cell survival, lymphogenesis and regulation of stress signaling. PLoS One, 7, e39047.  https://doi.org/10.1371/journal.pone.0039047 CrossRefPubMedPubMedCentralGoogle Scholar
  190. Willsie, J. K., & Clegg, J. S. (2001). Nuclear p26, a small heat shock/alpha-crystallin protein, and its relationship to stress resistance in Artemia franciscana embryos. The Journal of Experimental Biology, 204, 2339–2350.PubMedGoogle Scholar
  191. Worland, M. R. (1996). The relationship between water content and cold tolerance in the arctic collembolan Onychiurus arcticus (Collembola: Onychiuridae). European Journal of Entomology, 93, 341–348.Google Scholar
  192. Wszola, M., Kwiatkowski, A., Diuwe, P., et al. (2013). One-year results of a prospective, randomized trial comparing two machine perfusion devices used for kidney preservation. Transplant International, 26, 1088–1096.CrossRefGoogle Scholar
  193. Wu, J., & Kaufman, R. J. (2006). From acute ER stress to physiological roles of the unfolded protein response. Cell Death and Differentiation, 13, 374–384.  https://doi.org/10.1038/sj.cdd.4401840 CrossRefPubMedGoogle Scholar
  194. Wu, C. W., Biggar, K. K., Zhang, J., et al. (2015). Induction of antioxidant and heat shock protein responses during torpor in the gray mouse lemur, Microcebus murinus. Genomics, Proteomics & Bioinformatics, 13, 119–126.  https://doi.org/10.1016/j.gpb.2015.03.004 CrossRefGoogle Scholar
  195. Wu, C. W., Biggar, K. K., Luu, B. E., et al. (2016). Analysis of microRNA expression during the torpor-arousal cycle of a mammalian hibernator, the 13-lined ground squirrel. Physiological Genomics, 48, 388–396.  https://doi.org/10.1152/physiolgenomics.00005.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  196. Xu, R., Andres-Mateos, E., Mejias, R., et al. (2013). Hibernating squirrel muscle activates the endurance exercise pathway despite prolonged immobilization. Experimental Neurology, 247, 392–401.  https://doi.org/10.1016/j.expneurol.2013.01.005 CrossRefPubMedPubMedCentralGoogle Scholar
  197. Yan, J., Burman, A., Nichols, C., et al. (2006). Detection of differential gene expression in brown adipose tissue of hibernating arctic ground squirrels with mouse microarrays. Physiological Genomics, 25, 346–353.  https://doi.org/10.1152/physiolgenomics.00260.2005 CrossRefPubMedGoogle Scholar
  198. Yan, J., Barnes, B. M., Kohl, F., & Marr, T. G. (2007). Modulation of gene expression in hibernating arctic ground squirrels. Physiological Genomics, 32, 170–181.  https://doi.org/10.1152/physiolgenomics.00075.2007. CrossRefPubMedGoogle Scholar
  199. Yu, Z., Luo, H., Fu, W., & Mattson, M. P. (1999). The Endoplasmic reticulum stress-responsive protein GRP78 protects neurons against excitotoxicity and apoptosis: Suppression of oxidative stress and stabilization of calcium homeostasis. Experimental Neurology, 155, 302–314.  https://doi.org/10.1006/exnr.1998.7002 CrossRefPubMedGoogle Scholar
  200. Zhang, G., Storey, J. M., & Storey, K. B. (2011). Chaperone proteins and winter survival by a freeze tolerant insect. Journal of Insect Physiology, 57, 1115–1122.  https://doi.org/10.1016/j.jinsphys.2011.02.016 CrossRefPubMedGoogle Scholar
  201. Zhang, G., Storey, J.M., & Storey, K.B. (2017). Elevated chaperone proteins are a feature of winter freeze avoidance by larvae of the goldenrod gall moth, Epiblema scudderiana. Journal of Insect Physiology (in press). doi:  https://doi.org/10.1016/j.ymeth.2009.04.019. CrossRefPubMedPubMedCentralGoogle Scholar
  202. Zhao, J., Chen, Z.-Z., Qu, J.-J., et al. (2010). Responses of Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) adults to cold acclimation and the related changes of activities of several enzymes in their bodies. Acta Entomologica Sinica, 53, 147–153.Google Scholar
  203. Zhu, G., Ye, R., Jung, D. Y., et al. (2013). GRP78 plays an essential role in adipogenesis and postnatal growth in mice. The FASEB Journal, 27, 955–964.  https://doi.org/10.1096/fj.12-213330 CrossRefPubMedPubMedCentralGoogle Scholar
  204. Zilaee, M., & Shirali, S. (2016). Heat shock proteins and diabetes. Canadian Journal of Diabetes, 40, 594–602.  https://doi.org/10.1016/j.jcjd.2016.05.016 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Molecular BiologyUniversity of Texas Southwestern Medical CenterDallasUSA
  2. 2.Department of BiologyCarleton UniversityOttawaUSA

Personalised recommendations