Skip to main content

Heat Shock Proteins in Stress in Teleosts

  • Chapter
  • First Online:
Regulation of Heat Shock Protein Responses

Part of the book series: Heat Shock Proteins ((HESP,volume 13))

Abstract

Heat shock proteins (HSP) play important role in maintenance of cellular homeostasis. These proteins constitute around 5–10% total proteins of all normal cells and mediate the correct assembly of proteins and intracellular localization. In unstressed cells, HSP play various constitutive functions; however, when cells face stressed condition, multifold increase in the synthesis of HSP is observed. Fish is an important animal in aquatic ecosystem and the health of fish reflects the health status of its environment. Moreover, fish is a health food and fisheries and aquaculture is one of the the fastest growing food production sectors. Fishes are poikilothermic animals and confront a wide range of biotic and abiotic stressors, and like other animals and plants, in fish also HSP play important role in combating and/or withstanding the stress. So the HSP have potential applications in monitoring and management of stress in fish. The present chapter discusses the different types of HSP that have been reported in fish and their potential applications in monitoring and management of fish health under biotic and abiotic stress; further, the knowledge from the lower vertebrates could be useful in health and disease management in higher vertebrates including humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CP:

Chlorpyrifos

CYP1A:

Cytochrome monooxygenase P450 1A

DC:

Dendritic cell

EV:

Esfenvalerate

Hsc:

Heat shock cognates

HSP:

Heat shock proteins

IL:

Interleukin

IPCC:

Intergovernmental Panel on Climate Change

MT:

Metallothionine

MHC:

Major histocompatibility complex

ppt:

Parts per trillion

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TNF:

Tumor necrosis factor

References

  • Abdel-Gawad, F. K., & Khalil, W. K. B. (2013). Modulation of stress protein genes in the bass (Epinephelus sguaza) caught from the Gulf of Suez, the Red Sea, Egypt. Ecotoxicology and Environmental Safety, 96, 175–181.

    Article  CAS  PubMed  Google Scholar 

  • Aksungur, N., Aksungur, M., Akbulut, B., & Kutlu, I. (2007). Effects of stocking density on growth performance, survival and food conversion ratio of turbot (psetta maxima) in the net cages on the southeastern coast of the Black Sea, Turk. Journal of Fisheries and Aquatic Science, 7, 147–152.

    Google Scholar 

  • Albani, S., et al. (1995). Positive selection in autoimmunity: Abnormal immune responses to a bacterial dnaJ antigenic determinant in patients with early rheumatoid arthritis. Nature Medicine, 1, 448–452.

    Article  CAS  PubMed  Google Scholar 

  • Ali, K. S., Dorgai, L., Gazdag, A., Abraham, M., & Hermesz, E. (2003). Identification and induction of hsp 70 gene by heat shock and cadmium exposure in carp. Acta Biologica Hungarica, 54(3–4), 323–334.

    CAS  PubMed  Google Scholar 

  • Allan, B. J. M., Domenici, P., Munday, P. L., & McCormick, M. I. (2015). Feeling the heat: The effect of acute temperature changes on predator–prey interactions in coral reef fish. Conservation Physiology, 3(1), cov011.

    Article  PubMed  PubMed Central  Google Scholar 

  • Amaeze, N. H., Adeyemi, R. O., & Adebesin, A. O. (2015). Oxidative stress, heats shock protein and histopathological effects in the gills of African catfish, Clarias Gariepinus induced by bridge runoffs. Environmental Monitoring and Assessment, 187(4), 172.

    Google Scholar 

  • An, H. L., Lei, K., & Bing-hui, Z. (2014). Use of heat shock protein mRNA expressions asbiomarkers in wild crucian carp for monitoringwater quality. Environmental Toxicology and Pharmacology, 37, 248–255.

    Article  CAS  PubMed  Google Scholar 

  • Anderton, S. M., van der Zee, R., Prakken, B., Noordzij, A., & van Eden, W. (1995). Activation of T cells recognizing self 60-kD heat shock protein can protect against experimental arthritis. The Journal of Experimental Medicine, 181, 943–952.

    Article  CAS  PubMed  Google Scholar 

  • Baer, A., Schulz, C., Traulse, I., & Krieter, J. (2011). Analysing the growth of turbot (Psetta maxima) in a commercial recirculation system with the use of three different growth models. Aquaculture International, 19, 497–511.

    Article  Google Scholar 

  • Banerjee, S., Mahanty, A., Mohanty, S., Guhamazumder, D. N., Cash, P., & Mohanty, B. P. (2017). Identification of potential biomarkers of hepatotoxicity by plasma proteome analysis of arsenic-exposed carp Labeo rohita. Journal of Hazardous Material, 336, 71–80.

    Article  CAS  PubMed  Google Scholar 

  • Banerjee, S., Mitra, T., Purohit, G. K., Mohanty, S., & Mohanty, B. P. (2015). Immunomodulatory effect of arsenic on cytokine and HSP gene expression in Labeo rohita fingerlings. Fish & Shellfish Immunology, 44, 43–49.

    Article  CAS  Google Scholar 

  • Basu, S., Binder, R. J., Ramalingam, T., & Srivastava, P. K. (2001). CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity, 14, 303–313.

    Article  CAS  PubMed  Google Scholar 

  • Beere, H. M. (2004). The stress of dying: The role of heat shock proteins in the regulation of apoptosis. Journal of Cell Science, 117(13), 2641–2651.

    Article  CAS  PubMed  Google Scholar 

  • Blachere, N. E., Li, Z. H., & Chandawarkar, R. Y. (1997). Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. The Journal of Experimental Medicine, 186, 1315–1322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Creagh, E. M., Carmody, R. J., & Cotter, T. G. (2000). Heat shock protein 70 inhibits Caspase-dependent and -independent apoptosis in Jurkat T cells. Experimental Cell Research, 257(1), 58–66.

    Article  CAS  PubMed  Google Scholar 

  • Das, P., Gupta, A., & Manna, S. K. (2005). Heat shock protein 70 expression in different tissues of Cirrhinus mrigala (Ham.) following heat stress. Aquaculture Research, 36, 525–529.

    Article  CAS  Google Scholar 

  • Das, S., Mohapatra, A., & Sahoo, P. K. (2015). Expression analysis of heat shock protein genes during Aeromonas hydrophila infection in rohu, Labeo rohita, with special reference to molecular characterization of Grp78. Cell Stress & Chaperones, 20(1), 73–84.

    Article  CAS  Google Scholar 

  • de la serrana, D. G., Johnston, I. A., & Picard, D. (2013). Expression of heat shock protein (Hsp90) Paralogues is regulated by amino acids in skeletal muscle of Atlantic salmon. PLoS One, 8(9), e74295.

    Google Scholar 

  • Deane, E. E., Kelly, S. P., Luk, J. C., & Woo, N. Y. (2005). Chronic salinity adaptation modulates hepatic heat shock protein and insulin-like growth factor I expression in black sea bream. Marine Biotechnology, 4(2), 193–205.

    Google Scholar 

  • Eder, K. J., Leutenegger, C. M., Wilson, B. W., & Werner, I. (2004). Molecular and cellular biomarker responses to pesticide exposure in juvenile chinook salmon (Oncorhynchus tshawytscha). Marine Environmental Research, 58(2–5), 809–813.

    Article  CAS  PubMed  Google Scholar 

  • Eder, K. J., Leutenegger, C. M., Kohler, H. R., & Werner, I. (2009). Effects of neurotoxic insecticides on heat-shock proteins and cytokine transcription in Chinook salmon (Oncorhynchus tshawytscha). Ecotoxicology and Environmental Safety, 72, 182–190.

    Article  CAS  PubMed  Google Scholar 

  • Elias, D., Marcus, H., Reshef, T., Ablamunits, V., & Cohen, I. R. (1995). Induction of diabetes in standard mice by immunization with the p277 peptide of a 60-kDa heat shock protein. European Journal of Immunology, 25, 2851–2857.

    Article  CAS  PubMed  Google Scholar 

  • Elicker, K. S., & Hutson, L. D. (2007). Genome-wide analysis and expression profiling of the small heat shock proteins in zebrafish. Gene, 403(1–2), 60–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fangue, N. A. (2007). Thermal acclimation and adaptation in the common killfish Fundulus hetetoclitus: Thermal reaction norms and underlying mechanisms. Ph.D. Thesis submitted to University of British Columbia.

    Google Scholar 

  • Feng, Q., Boone, A. N., & Vijayan, M. M. (2003). Copper impact on heat shock protein 70 expression and apoptosis in rainbow trout hepatocytes. Comparative Biochemistry and Physiology, 35 C(3), 345–355.

    Google Scholar 

  • Fuhrman, J. A. (1999). Marine viruses and their biogeochemical and ecological effects. Nature, 399(6736), 541–548.

    Article  CAS  PubMed  Google Scholar 

  • Fu, D., Chen, J., Zhang, Y., & Yu, Z. (2011). Cloning and expression of a heat shock protein (HSP) 90 gene in the haemocytes of Crassostrea hongkongensis under osmotic stress and bacterial challenge. Fish & Shellfish Immunology, 31(1), 118–125.

    Article  CAS  Google Scholar 

  • Gaston, J. S. H. (2002). Heat shock proteins and innate immunity. Clinical and Experimental Immunology, 127(1), 1–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geist, J., Werner, I., Eder, K. J., & Leutenegger, C. M. (2007). Comparisons of tissue-specific transcription of stress response genes with whole animal endpoints of adverse effect in striped bass (Morone saxatilis) following treatment with copper and esfen valerate. Aquatic Toxicology, 85, 28–39.

    Article  CAS  PubMed  Google Scholar 

  • Ghisi, N. C., Oliveira, E. C., Guiloski, I. C., Lima, S. B., Silva, A. H., Longhi, S. J., & Prioli, A. J. (2017). Multivariate and integrative approach to analyze multiple biomarkers in ecotoxicology: A field study in Neotropical region. The Science of the Total Environment, 609(31), 1208–1218.

    Article  CAS  PubMed  Google Scholar 

  • Goldfarb, M. (2017). Feeling the heat: How fish are migrating from warming waters. https://e360.yale.edu/features/feeling-the-heat-warming-oceans-drive-fish-into-cooler-waters. Accessed on 25 Oct 2017.

  • Gusev, N. B., Bogatcheva, V., & Marston, S. B. (2002). Structure and properties of small heat shock proteins (sHsp) and their interaction with cytoskeleton proteins. Biochemistry, 67(5), 511–519.

    CAS  PubMed  Google Scholar 

  • Haslbeck, M. (2002). sHsps and their role in the chaperone network. Cellular and Molecular Life Sciences, 59(10), 1649–1657.

    Article  CAS  PubMed  Google Scholar 

  • Hallare, A. V., Köhler, H. R., & Triebskorn, R. (2004). Developmental toxicity and stress protein responses in zebrafish embryos after exposure to diclofenac and its solvent, DMSO. Chemosphere, 56(7), 659–666.

    Article  CAS  PubMed  Google Scholar 

  • Healy, T. M., Tymchuk, W. E., Osborne, E. J., & Schulte, P. M. (2010). Heat shock response of killifish ( ): Candidate gene and heterologous microarray approaches. Physiological Genomics, 41(2), 171–184.

    Article  CAS  PubMed  Google Scholar 

  • Heath, A. G. (1987). Water pollution and fish Physiology. Florida: CRC Press.

    Google Scholar 

  • Hook, S. E., Gallagher, E. P., & Batley, G. E. (2014). The role of biomarkers in the assessment of aquatic ecosystem health. Integrated Environmental Assessment and Management, 10, 327–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IPCC. (2007). Fourth assessment report - climate change 2007: Synthesis report. IPCC, Geneva, Switzerland.

    Google Scholar 

  • Ishida, Y., & Nagata, K. (2011). Hsp47 as a collagen-specific molecular chaperone. Methods in Enzymology, 499, 167–182.

    Article  CAS  PubMed  Google Scholar 

  • Iwama, G. K. (1998). Stress in fish. Annals of the New York Academy of Sciences, 851(1 STRESS OF LIF), 304–310.

    Article  Google Scholar 

  • Iwama, G. K. (2004). Are hsps suitable for indicating stressed states in fish? Journal of Experimental Biology, 207(1), 15–19.

    Article  CAS  Google Scholar 

  • Iwama, G. K., Vijayan, M. M., Forsyth, R. B., & Ackerman, P. A. (1999). Heat shock proteins and physiological stress in fish. American Zoologist, 39(6), 901–909.

    Article  CAS  Google Scholar 

  • Jee, H. (2016). Size dependent classification of heat shock proteins: A mini-review. Journal of Exercise Rehabilitation, 12(4), 255–259.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia, H., Halilou, A. I., Hu, L., Cai, W., Liu, J., & Huang, B. (2010). Heat shock protein 10 (Hsp10) in immune-related diseases: One coin, two sides. International Journal of Biochemistry and Molecular Biology, 2(1), 47–57.

    PubMed  PubMed Central  Google Scholar 

  • Jia, R., Liu, B., Feng, W., Han, C., & Huang, B. (2016). Stress and immune responses in skin of turbot (Scophthalmus maximus) under different stocking densities. Fish & Shellfish Immunology, 55, 131–139.

    Article  CAS  Google Scholar 

  • Jiang, X., Guan, X., Yao, Z., Jin, X., & Han, Y. (2015). Effects of single and joint subacute exposure of copper and cadmium on heat shock proteins in common carp (Cyprinus carpio). Biological Trace Element Research, 169(2), 374–381.

    Article  PubMed  Google Scholar 

  • Kagawa, N. (2004). A drastic reduction in the basal level of heat-shock protein 90 in the brain of goldfish (Carassius auratus) after administration of geldanamycin. Zoological Science, 21(11), 1085–1089.

    Article  CAS  PubMed  Google Scholar 

  • Kaufman, B. A. (2003). A function for the mitochondrial chaperonin Hsp60 in the structure and transmission of mitochondrial DNA nucleoids in Saccharomyces Cerevisiae. The Journal of Cell Biology, 163(3), 457–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilemade, M., & Mothersill, C. (2001). Heat shock protein 70 levels in rainbow trout primary epidermal cultures in response to 2,4-dichloroaniline exposure: A novelin vitro aquatic toxicity marker. Environmental Toxicology, 16(3), 253–259.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, R., Pradhan, A., Khan, F. A., Lindström, P., Ragnvaldsson, D., & Ivarsson, P. (2015). Comparative analysis of stress induced gene expression in Caenorhabditiselegans following exposure to environmental and lab reconstituted complex metal mixture. PLoS One, 10(7), e0132896.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lehner, T., Bergmeier, L. A., Wang, Y., Tao, L., Sing, M., & Spallek, R. (2000). Heat shock proteins generate beta-chemokines which function as innate adjuvants enhancing adaptive immunity. European Journal of Immunology, 30, 594–603.

    Article  CAS  PubMed  Google Scholar 

  • Leidhold, C., von Janowsky, B., Becker, D., Bender, T., & Voos, W. (2006). Structure and function of Hsp78, the mitochondrial ClpB homolog. Journal of Structural Biology, 156(1), 149–164.

    Article  CAS  PubMed  Google Scholar 

  • Lindquist-McKenzie, S., Henikoff, S., & Meselson, M. (1975). Localization of RNA from heat-induced polysomes at puff sites in Drosophila melanogaster. Proceedings of the National Academy of Sciences, 72(3), 1117–1121.

    Article  CAS  Google Scholar 

  • Lund, S. G., & Tufts, B. L. (2003). The physiological effects of heat stress and the role of heat shock proteins in rainbow trout (Oncorhynchus mykiss) red blood cells. Fish Physiology and Biochemistry, 29(1), 1–12.

    Article  CAS  Google Scholar 

  • Luo, L., Ke, C., Guo, X., Shi, B., & Huang, M. (2014). Metal accumulation and differentially expressed proteins in gill of oyster (Crassostrea hongkongensis) exposed to long-term heavy metal-contaminated estuary. Fish & Shellfish Immunology, 38(2), 318–329.

    Article  CAS  Google Scholar 

  • Mahanty, A., Purohit, G. K., Banerjee, S., Karunakaran, D., Mohanty, S., & Mohanty, B. P. (2016a). Proteomic changes in the liver of Channa striatus in response to high temperature stress. Electrophoresis, 37, 1704–1717.

    Article  CAS  PubMed  Google Scholar 

  • Mahanty, A., Purohit, G. K., Yadav, R. P., Mohanty, S., & Mohanty, B. P. (2016b). hsp90 and hsp47 appear to play an important role in minnow Puntius sophore for surviving in the hot spring run-off aquatic ecosystem. Fish Physiology and Biochemistry, 43(1), 89–102.

    Article  PubMed  Google Scholar 

  • Mahanty, A., Purohit, G. K., Nayak, N. R., Mohanty, S., & Mohanty, B. P. (2017). Suitable reference gene for quantitative real-time PCR analysis of gene expression in gonadal tissues of minnow Puntius Sophore under high-temperature stress. BMC Genomics, 18, 617. https://doi.org/10.1186/s12864-017-3974-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Mattoo, R. U. H., Sharma, S. K., Smriti Priya, S., Finka, A., & Goloubinoff, P. (2013). Hsp110 is a bona fide chaperone using ATP to unfold stable misfolded polypeptides and reciprocally collaborate with Hsp70 to solubilize protein aggregates. The Journal of Biological Chemistry, 288, 21399. https://doi.org/10.1074/jbc.M113.479253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer, M. P., & Bukau, B. (2005). Hsp70 chaperones: Cellular functions and molecular mechanism. Cellular and Molecular Life Sciences, 62(6), 670–684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitra, T., Mahanty, A., Ganguly, S., Banerjee, S., Bhowmick, S., Mahaver, L. R., Paul, S. K., Abdulla, T., Parida, P. K., & Mohanty, B. P. (2015). Fish health assessment in inland openwater ecosystems-Evaluating stress protein transcript profiles in fish biomonitoring tools. Abstract no. GHRN(P)-2. 2nd International symposium on genomics in aquaculture 28–30 January, 2016, ICAR-CIFA, Bhubaneswar, Odisha.

    Google Scholar 

  • Mitra, T., Mahanty, A., Ganguly, S., Purohit, G. K., Mohanty, S., Das, B. K., & Mohanty, B. P. (2017). Gene expression patterns of heat shock proteins as biomarker response against environmental pollution in fish (Rita rita) from its natural riverine habitat. Science of the Total Environment (communicated).

    Google Scholar 

  • Mohanty, B. P., Bhattacharjee, S., Mondal, K., & Das, M. K. (2010a). HSP70 expression profiles in white muscles of riverine catfish Rita rita show promise as biomarker for pollution monitoring in tropical rivers. National Academy Science Letters, 33, 177–182.

    CAS  Google Scholar 

  • Mohanty, B. P., Mohanty, S., Sahoo, J. K., & Sharma, A. P. (2010b). Climate change: Impacts on fisheries and aquaculture. In S. Simard (Ed.), Climate change and variability, InTech open (pp. 119–138). https://doi.org/10.5772/9805.

    Chapter  Google Scholar 

  • Mohanty, B. P., Banerjee, S., Bhattacharjee, S., Mitra, T., Purohit, G. K., Sharma, A. P., Karunakaran, D., & Mohanty, S. (2013). Muscle proteomics of the Indian major carp catla (Catla catla, Hamilton). Journal of Proteomics Bioinformatics, 6, 252–263.

    Google Scholar 

  • Mohanty, B. P., Banerjee, S., Bhattacharjee, S., Mitra, T., et al. (2015). Muscle proteomics of the Indian major carp Catla (Catla catla, Hamilton). Journal of Proteomics and Bioinformatics, 6, 11.

    Google Scholar 

  • Muchowski, P. J., & Wacker, J. L. (2005). Modulation of neurodegeneration by molecular chaperones. Nature Reviews. Neuroscience, 6, 1–22.

    Article  Google Scholar 

  • Narum, S. R., Campbell, N. R., Meyer, K. A., Miller, M. R., & Hardy, R. W. (2013). Thermal adaptation and acclimation of ectotherms from differing aquatic climates. Molecular Ecology, 22(11), 3090–3097.

    Article  PubMed  Google Scholar 

  • Nicosia, A., Maggio, T., Mazzola, S., Gianguzza, F., Cuttitta, A., Costa, S., & Ianora, A. (2014). Characterization of small HSPs from Anemonia viridis reveals insights into molecular evolution of alpha crystallin genes among cnidarians. PLoS One, 9(9), e105908.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nordstrom, D. K. (2002). Public health. Worldwide occurrences of arsenic in groundwater. Science, 296, 2143–2145.

    Article  CAS  PubMed  Google Scholar 

  • Ohashi, K., Burkart, V., Flohe, S., & Kolb, H. (2000). Cutting edge: Heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. Journal of Immunology, 164, 558–561.

    Article  CAS  Google Scholar 

  • Oksala, N. K. J., GülerEkmekçi, F., Ozsoy, G., Kirankaya, S., Kokkola, T., Emecen, G., Lappalainen, J., Kaarniranta, K., & Atalay, M. (2014). Natural thermal adaptation increases heat shock protein levels and decreases oxidative stress. Redox Biology, 3, 25–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oost, V. R., Beyer, J., & Vermeulen, N. P. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: A review. Environmental Toxicology and Pharmacology, 13(2), 57–149.

    Article  PubMed  Google Scholar 

  • Padmini, E., & Geetha, B. (2007). A comparative seasonal pollution assessment study on Ennore Estuary with respect to metal accumulation in the grey mullet, Mugil cephalus. Oceanological and Hydrobiological Studies, 36(4), 91–103.

    Google Scholar 

  • Padmini, E., & Usha Rani, M. (2008). Impact of seasonal variation on HSP70 expression quantitated in stressed fish hepatocytes. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 151(3), 278–285.

    Article  Google Scholar 

  • Padmini, E., Lavanya, S., & Uthra, V. (2009). Preeclamptic placental stress and over expression of mitochondrial HSP70. Clinical Chemistry and Laboratory Medicine, 47(9), 1073–1080.

    Google Scholar 

  • Panjwani, N. N., Popova, L., & Srivastava, P. K. (2002). Heat shock proteins grp96 and hsp70 activate the release of nitric oxide by APCs. Journal of Immunology, 168, 2997–3003.

    Article  CAS  Google Scholar 

  • Park, H., Ahn, I. H., & Lee, H. E. (2007). Expression of heat shock protein 70 in the thermally stressed Antarctic clam Laternula elliptica. Cell Stress & Chaperones, 12(3), 275–282.

    Article  CAS  Google Scholar 

  • Picard, D. (2006). Intracellular dynamics of the Hsp90 co-chaperone p23 is dictated by Hsp90. Experimental Cell Research, 312(2), 198–204.

    Article  CAS  PubMed  Google Scholar 

  • Pinto, E., Sigaud-Kutner, T. C. S., Leitao, M. A. S., Okamoto, O. K., Morse, D., & Colepicolo, P. (2003). Heavy metal-induced oxidative stress in algae. Journal of Phycology, 39, 1008–1018.

    Article  CAS  Google Scholar 

  • Pockley, A. G. (2003). Heat shock proteins as regulators of the immune response. Lancet, 362, 469–476.

    Article  CAS  PubMed  Google Scholar 

  • Podrabsky, J. E., & Somero, G. N. (2006). Inducible heat tolerance in Antarctic notothenioid fishes. Polar Biology, 30(1), 39–43.

    Article  Google Scholar 

  • Poloczanska, E. S., et al. (2016). Responses of marine organisms to climate change across oceans. Frontiers in Marine Science, 3. https://doi.org/10.3389/fmars.2016.00062

  • Porte, C., Biosca, X., Sole, M., & Albaiges, J. (2001). The integrated use of chemical analysis, cytochrome P450 and stress proteins in mussels to assess pollution along the Calician coast (NW Spain). Environmental Pollution, 112, 261–268.

    Article  CAS  PubMed  Google Scholar 

  • Porte, C., Riboldi, E., & Sica, A. (2011). Mechanisms linking pathogens-associated inflammation and cancer. Cancer Letters, 305(2), 250–262.

    Article  CAS  PubMed  Google Scholar 

  • Portner, H. O., & Knust, R. (2007). Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science, 315(5808), 95–97.

    Article  PubMed  Google Scholar 

  • Purohit, G. K., Mahanty, A., Suar, M., Sharma, A. P., Mohanty, B. P., & Mohanty, S. (2014). Investigating hsp gene expression in liver of Channa striatus under heat stress for understanding the upper thermal acclimation. Biotechnology Research International. https://doi.org/10.1155/2014/381719 , 2014, 1.

    Google Scholar 

  • Quintana, F. J., & Cohen, I. R. (2005). Heat shock proteins as endogenous adjuvants in sterile and septic inflammation. Journal of Immunology, 175, 2777–2782.

    Article  CAS  Google Scholar 

  • Ritossa, F. M. (1962). A new puffing pattern induced by a temperature shock and DNP in drosophila. Experientia, 18, 571–573.

    Article  CAS  Google Scholar 

  • Roberts, R. J., Agius, C., Saliba, C., Bossier, P., & Sung, Y. Y. (2010). Heat shock proteins (chaperones) in fish and shellfish and their potential role in relation to fish health: A review. Journal of Fish Diseases, 33, 789–801.

    Article  CAS  PubMed  Google Scholar 

  • Sampaio, F. G., Boijink, C. L., Oba, E. T., Santos, L. R. B., Kalinin, A. L., & Rantin, F. T. (2008). Antioxidant defenses and biochemical changes in pacu (Piaractus mesopotamicus) in response to single and combined copper and hypoxia exposure. Comparative Biochemistry and Physiology, 147, 43–51.

    Google Scholar 

  • Secombes, C. J., Wang, T., & Bird, S. (2011). The interleukins of fish. Developmental and Comparative Immunology, 35, 1336–1345.

    Article  CAS  PubMed  Google Scholar 

  • Selvakumar, S., & Geraldine, P. (2005). Heat shock protein induction in the freshwater prawn Macrobrachium malcolmsonii: Acclimation-influenced variations in the induction temperatures for Hsp70. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 140(2), 209–215.

    Article  CAS  Google Scholar 

  • Singh, M. K., Sharma, J. G., & Chakrabarti, R. (2015). Simulation study of natural UV-B radiation on Catla catla and its impact on physiology, oxidative stress, Hsp 70 and DNA fragmentation. Journal of Photochemistry and Photobiology. B, 149, 156–163.

    Article  CAS  Google Scholar 

  • Somero, G. N. (2010). The physiology of climate change: How potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. Journal of Experimental Biology, 213(6), 912–920.

    Article  CAS  Google Scholar 

  • Srivastava, P. K. (2000). Immunotherapy of human cancer: Lessons from mice. Nature Immunology, 1, 363–366.

    CAS  PubMed  Google Scholar 

  • Srivastava, P. K. (2002). Roles of heat shock proteins in innate and adaptive immunity. Nature Reviews Immunology, 2, 185–194.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava, P. K. (2008). New jobs for ancient chaperones. Scientific American, 283, 50–55.

    Article  Google Scholar 

  • Sueiro, S. C., & Palacios, M. G. (2016). Immunological and health-state parameters in the Patagonian rockfish Sebastes Oculatus. Their relation to chemical stressors and seasonal changes. Fish & Shellfish Immunology, 48, 71–78.

    Article  CAS  Google Scholar 

  • Tedeschi, J. N., Kennington, W. J., Berry, O., Whiting, S., Meekan, M., & Mitchell, N. J. (2015). Increased expression of Hsp70 and Hsp90 mRNA as biomarkers of thermal stress in loggerhead turtle embryos (Caretta Caretta). Journal of Thermal Biology, 47, 42–50.

    Article  CAS  PubMed  Google Scholar 

  • Vabulas, R. M., Ahmad-Nejad, P., Costa, C., Miethke, T., Kirschning, C. J., & Hacker, H. (2001). Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. The Journal of Biological Chemistry, 276, 31332–31339.

    Article  CAS  PubMed  Google Scholar 

  • Van, E. W., Thole, J., & van der Zee, R. (1988). Cloning of the mycobacterial epitope recognized by T lymphocytes in adjuvant arthritis. Nature, 331, 171–173.

    Article  Google Scholar 

  • Vincze, K., Scheil, V., Kuch, B., Köhler, H. R., Triebskorn, R. (2015). Impact of wastewater on fish health: A case study at the Neckar River (Southern Germany) using biomarkers in caged brown trout as assessment tools. Environmental Science and Pollution Research International, 22(15), 11822–11839.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Wei, Y., Li, X., Cao, H., Xu, M., & Dai, J. (2007). The identification of heat shock protein genes in goldfish (Carassius auratus) and their expression in a complex environment in Gaobeidian Lake, Beijing, China. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 145(3), 350–362.

    Google Scholar 

  • Weber, T. E., & Bosworth, B. G. (2005). Effects of 28 day exposure to cold temperature or feed restriction on growth, body composition, and expression of genes related to muscle growth and metabolism in channel catfish. Aquaculture, 246(1–4), 483–492.

    Article  CAS  Google Scholar 

  • Williams, J. H., Farag, A. M., Stansbury, M. A., Young, P. A., Bergman, H. L., & Petersen, N. S. (1996). Accumulation of hsp70 in juvenile and adult rainbow trout gill exposed to metal-contaminated water and or diet. Environmental Toxicology and Chemistry, 15, 1324–1328.

    Article  CAS  Google Scholar 

  • Xu, X. Y., Shen, Y. B., Fu, J. J., Liu, F., Guo, S. Z., Yang, X. M., & Li, J. (2011). Molecular cloning, characterization and expression patterns of HSP60 in the grass carp (Ctenopharyngodon idella). Fish & Shellfish Immunology, 31(6), 864–870.

    Article  CAS  Google Scholar 

  • Yengkokpam, S., Pal, A. K., Sahu, N. P., Jain, K. K., Dalvi, R., Misra, S., & Debnath, D. (2008). Metabolic modulation in Labeo rohita fingerlings during starvation: Hsp70 expression and oxygen consumption. Aquaculture, 285, 234–237.

    Article  CAS  Google Scholar 

  • Zanin-Zhorov, A., Bruck, R., Tal, G., Oren, S., Aeed, H., & Hershkoviz, R. (2005). Heat shock protein 60 inhibits Th1-mediated hepatitis model via innate regulation of Th1/Th2 transcription factors and cytokines. Journal of Immunology, 174, 3227–3236.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Indian Council of Agricultural Research for funding support under the projects ICAR-CIFRI Core project FREM/ER/12/03/05, ICAR-NFBSFARA (AS-2001), World Bank funded NAIP (Component-4; Basic and Strategic Research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bimal Prasanna Mohanty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohanty, B.P., Mahanty, A., Mitra, T., Parija, S.C., Mohanty, S. (2018). Heat Shock Proteins in Stress in Teleosts. In: Asea, A., Kaur, P. (eds) Regulation of Heat Shock Protein Responses. Heat Shock Proteins, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-74715-6_4

Download citation

Publish with us

Policies and ethics